Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Antibiotic use for presumed neonatally acquired infections far exceeds that for central line-associated blood stream infections: an exploratory critique

Abstract

Objective:

To assess antibiotic use as a complementary neonatal intensive care unit (NICU) infection measure to the central line-associated blood stream infection (CLABSI) rate.

Study Design:

Patient days (PDs), line days, antibiotic (AB) use, CLABSI and other proven infections were analyzed in consecutive admissions to two NICUs over 3 and 6 months, respectively, from 1 January 2008 until discharge. An antibiotic course (AC) consisted of one or more uninterrupted antibiotic days (AD), classified as perinatal or neonatal, if started 3 d or 4 d post birth and as rule-out sepsis or presumed infection (PI) if treated 4 d or 5d, respectively. Events were expressed per 1000 PD and aggregated by conventional treatment categories and by clinical perception of infection certainty: possible, presumed or proven.

Result:

The cohort included 754 patients, 18 345 PD, 6637 line days, 718 AC and 4553 AD. Of total antibiotic use, neonatal use constituted 39.2% of ACs, and 29.0% of ADs, When analyzed per 1000 PD, antibiotic use to treat PIs vs CLABSIs, was either 14 fold (CI 6.6–30) higher for ACs (5.40 vs 0.38/1000 PD, P<0.0001) or 8.8 fold (CI 7.1–11) higher for ADs (48.3 vs 5.5/1000 PD, P<0.0001).

Conclusion:

CLABSI rates, present a lower limit of NICU-acquired infections, whereas antibiotic-use measures, about 10-fold higher, may estimate an upper limit of that burden. Antibiotic-use metrics should be evaluated further for their ability to broaden NICU infection assessment and to guide prevention and antibiotic stewardship efforts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Grohskopf LA, Huskins WC, Sinkowitz-Cochran RL, Levine GL, Goldmann DA, Jarvis WR . Pediatric Prevention Network: use of antimicrobial agents in United States neonatal and pediatric intensive care patients. Pediatr Infect Dis J 2005; 24: 766–773.

    Article  Google Scholar 

  2. Patel SJ, Oshodi A, Prasad P, Delamora P, Larson E, Zaoutis T et al. Antibiotic use in neonatal intensive care units and adherence with Centers for Disease Control and Prevention 12 Step Campaign to prevent antimicrobial resistance. Pediatr Infect Dis J 2009; 28: 1047–1051.

    Article  Google Scholar 

  3. Wirtschafter DD, Pettit J, Kurtin P, Dalsey M, Chance K, Morrow HW et al. A statewide quality improvement collaborative to reduce neonatal central line-associated blood stream infections. J Perinatology 2010; 30: 170–181.

    Article  CAS  Google Scholar 

  4. Hammerschlag MR, Klein JO, Herschel M, Chen FC, Fermin R . Patterns of use of antibiotics in two newborn nurseries. N Engl J Med 1977; 296: 1268–1269.

    Article  CAS  Google Scholar 

  5. Centers for Disease Control and Prevention, The National Healthcare Safety Network (NHSN). Guidelines and Procedures for Monitoring CLABSI: Central Line-Associated Bloodstream Infection (CLABSI) Event. Atlanta: GA, 2010: Available at: http://www.cdc.gov/nhsn/PDFs/pscManual/4PSC_CLABScurrent.pdflast accessed 12-11-2010.

  6. Baltimore RS . The difficulty of diagnosing ventilator-associated pneumonia. Pediatrics 2003; 112: 1420–1421.

    Article  Google Scholar 

  7. Srinivasan PS, Brandler MD, D’Souza A . Necrotizing enterocolitis. Clin Perinatol 2008; 35: 251–272.

    Article  Google Scholar 

  8. Randolph AG, Brun-Buisson C, Goldman D . Identification of central venous catheter-related infections in infants and children. Pediatr Crit Care Med 2005; 6 (3 Suppl): S19–S24.

    Article  Google Scholar 

  9. Perlman SE, Saiman L, Larson EL . Risk factors for late-onset health care-associated bloodstream infections in patients in neonatal intensive care units. Am J Infect Control 2007; 35: 177–182.

    Article  Google Scholar 

  10. Haque KN . Defining common infections in children and neonates. J Hosp Infect 2007; 65 (Suppl 2): 110–114.

    Article  Google Scholar 

  11. Gerdes JS . Diagnosis and management of bacterial infections in the neonate. Pediatr Clin North Am 2004; 51: 939–959.

    Article  Google Scholar 

  12. Dean AG, Sullivan KM, Soe MM . OpenEpi: Open Source Epidemiologic Statistics for Public Health, Version 2.3. www.OpenEpi.com, updated 2009/20/05, accessed 2010/06/17.

  13. Powers RJ, Wirtschafter DD . Decreasing central line associated bloodstream infection in neonatal intensive care. Clin Perinatol 2010; 37: 247–272.

    Article  Google Scholar 

  14. Cotton C, Taylor S, Stoll B, Goldberg RN, Hansen NI, Sánchez PJ et al. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low bith weight infants. Pediatrics 2009; 123: 58–66.

    Article  Google Scholar 

  15. Fischer JE, Bachmann LM, Jaeschke R . A readers’ guide to the interpretation of diagnostic test properties: clinical example of sepsis. Intensive Care Med 2003; 29: 1043–1051.

    Article  Google Scholar 

  16. Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PM . The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol 2003; 56: 1129–1135.

    Article  Google Scholar 

  17. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH . Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 2005; 58: 982–990.

    Article  Google Scholar 

  18. Van den Bruel A, Cleemput I, Aertgeerts B, Ramaekers D, Buntinx F . The evaluation of diagnostic tests: evidence on technical and diagnostic accuracy, impact on patient outcome and cost-effectiveness is needed. J Clin Epidemiol 2007; 60: 1116–1122.

    Article  CAS  Google Scholar 

  19. Lijmer JG, Mol BW, Heisterkamp S, Bonsel GJ, Prins MH, van der Meulen JH et al. Empirical evidence of design-related bias in studies of diagnostic tests. JAMA 1999; 282: 1061–1066.

    Article  CAS  Google Scholar 

  20. Deeks JJ . Systematic reviews in health care: Systematic reviews of evaluations of diagnostic and screening tests. BMJ 2001; 323 (7305): 157–162.

    Article  CAS  Google Scholar 

  21. Buttery JP . Blood cultures in newborns and children-optimizing an everyday test. Arch Dis Child Fetal Neonatal ED 2002; 87: F25–F28.

    Article  CAS  Google Scholar 

  22. Connell TG . How reliable is a negative blood culture result? Volume of blood submitted for culture in routine practice in a children's hospital. Pediatrics 2007; 119: 891–896.

    Article  Google Scholar 

  23. Falagas ME, Kazantzi MS, Bliziotis JA . Comparison of utility of blood cultures from intravascular catheters and peripheral veins: a systematic review and decision analysis. J Med Microbiol 2008; 57: 1–8.

    Article  Google Scholar 

  24. Kellogg JA, Ferrentino FL, Goodstein MH, Liss J, Shapiro SL, Bankert DA . Frequency of low-level bacteriemia in infants from birth to two months of age. Pediatr Infect Dis J 1997; 16: 381–385.

    Article  CAS  Google Scholar 

  25. Schelonka RL, Chai MK, Yoder BA, Hensley D, Brockett RM, Ascher DP . Volume of blood required to detect common neonatal pathogens. J Pediatr 1996; 129: 275–278.

    Article  CAS  Google Scholar 

  26. Isaacman DJ, Karasic RB, Reynolds EA, Kost SI . Effect of number of blood cultures and volume of blood on detection of bacteremia in children. J Pediatr 1996; 128: 190–195.

    Article  CAS  Google Scholar 

  27. Mermel LA, Maki DG . Detection of bacteremia in adults: consequences of culturing an inadequate volume of blood. Ann Intern Med 1993; 119: 270–272.

    Article  CAS  Google Scholar 

  28. Harris H, Wirtschafter D, Cassady G . Endotracheal intubation and its relationship to bacterial colonization and systemic infection of newborn infants. Pediatrics 1976; 58 (6): 816–823.

    CAS  Google Scholar 

  29. Sherman MP, Goetzman BW, Ahlfors CE, Wennberg RP . Tracheal asiration and its clinical correlates in the diagnosis of congenital pneumonia. Pediatrics 1980; 65: 258–263.

    CAS  Google Scholar 

  30. Jordan JA . Molecular diagnosis of neonatal sepsis. Clin Perinatol 2010; 37: 411–419.

    Article  Google Scholar 

  31. McBryde ES, Brett J, Russo PL, Worth LJ, Bull AL, Richards MJ . Validation of statewide surveillance system data on central line-associated bloodstream infection in intensive care units in Australia. Infect Control Hosp Epidemiol 2009; 30: 1045–1049.

    Article  Google Scholar 

  32. Lin MY, Hota B, Khan YM, Woeltje KF, Borlawsky TB, Doherty JA et al. Quality of traditional surveillance for public reporting of nosocomial bloodstream infection rates. JAMA 2010; 304 (18): 2035–2041.

    Article  CAS  Google Scholar 

  33. Fischer JE, Seifarth FG, Baenziger O, Fanconi S, Nadal D . Hindsight judgment on ambiguous episodes of suspected infection in critically ill children: Poor consensus amongst experts? Eur J Pediatr 2003; 162: 840–843.

    Article  Google Scholar 

  34. Fischer JE, Harbarth S, Agthe AG, Benn A, Ringer SA, Goldmann DA et al. Quantifying uncertainty: physicians’ estimates of infection in critically ill neonates and children. Clin Infect Dis 2004; 38: 1383–1390.

    Article  Google Scholar 

  35. Okascharoen C, Hui C, Cairnie J, Morris AM, Kirpalani H . External validation of bedside prediction score for diagnosis of late-onset neonatal sepsis. J Perinatol 2007; 27: 496–501.

    Article  CAS  Google Scholar 

  36. Sarkar S, Bhagat I, DeCristofaro JD, Wiswell TE, Spitzer AR . A study of the role of multiple site blood cultures in the evaluation of neonatal sepsis. J Perinatol 2006; 26: 18–22.

    Article  CAS  Google Scholar 

  37. Modi N, Doré CJ, Saraswatula A, Richards M, Bamford KB, Coello R et al. A case definition for national and international neonatal bloodstream infection surveillance. Arch Dis Child Fetal Neonatal Ed 2009; 94: F8–F12.

    Article  CAS  Google Scholar 

  38. Stark AR . American Academy of Pediatrics Committee on Fetus and Newborn. Levels of care. Pediatrics 2004; 114: 1341–1347.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D D Wirtschafter.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Perinatology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirtschafter, D., Padilla, G., Suh, O. et al. Antibiotic use for presumed neonatally acquired infections far exceeds that for central line-associated blood stream infections: an exploratory critique. J Perinatol 31, 514–518 (2011). https://doi.org/10.1038/jp.2011.39

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2011.39

Keywords

This article is cited by

Search

Quick links