Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Quantitative Elastography of the uterine cervix as a predictor of preterm delivery

Abstract

Objective:

To evaluate the correlation between preterm delivery before 37 weeks of gestation and ultrasound elastography strain measurement of cervical stiffness.

Study Design:

In this prospective study, 182 pregnant women were examined vaginally by ultrasound elastography from a mid-sagittal plane. Cervical length was measured and strain was calculated in four regions of interest on the anterior cervical lip. First, the software was validated by intraobserver variability. Second, strain and strain ratios were calculated with adjusted software presets and correlated to the outcome of spontaneous preterm delivery (sPTD).

Result:

A total of 8928 regions of interest (ROIs) and 6696 ratios were evaluated. The median gestational age at examination was 26±6.1 weeks. A median maternal age of 33±5.6 and a medial parity of 1±0.9 were observed. Intra-Class-Correlation values in validation phase ranged from 0.893 to 0.967. The prevalence of sPTD was 11.9%. Strain ratio Rselective was identified as the best predictor of preterm delivery. Rselective values >0.89 were associated with preterm delivery with a sensitivity of 0.59 and a specificity of 0.86 (odds ratio=1.474 for an increase of 0.1 in Rselective; P=0.002).

Conclusion:

Ultrasound elastography strain measurement of cervical stiffness is correlated with the predictability of preterm delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Muglia LJ, Katz M . The enigma of spontaneous preterm birth. N Engl J Med 2010; 362 (6): 529–535.

    Article  CAS  PubMed  Google Scholar 

  2. Martin JA, Hamilton BE, Ventura SJ, Osterman MJ, Kirmeyer S, Mathews TJ et al. Births: final data for 2009. Natl Vital Stat Rep 2011; 60 (1): 1–70.

    PubMed  Google Scholar 

  3. Belizan JM, McClure EM, Goudar SS, Pasha O, Esamai F, Patel A et al. Neonatal death in low- to middle-income countries: a global network study. Am J Perinatol 2012; 29 (8): 649–656.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 2012; 379 (9832): 2151–2161.

    Article  PubMed  Google Scholar 

  5. Escobar GJ, McCormick MC, Zupancic JA, Coleman-Phox K, Armstrong MA, Greene JD et al. Unstudied infants: outcomes of moderately premature infants in the neonatal intensive care unit. Arch Dis Child Fetal Neonatal Ed 2006; 91 (4): F238–F244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goldenberg RL, Hoffman HJ, Cliver SP . Neurodevelopmental outcome of small-for-gestational-age infants. Eur J Clin Nutr 1998; 52 (Suppl 1): S54–S58.

    PubMed  Google Scholar 

  7. Word RA, Li XH, Hnat M, Carrick K . Dynamics of cervical remodeling during pregnancy and parturition: mechanisms and current concepts. Semin Reprod Med 2007; 25 (1): 69–79.

    Article  CAS  PubMed  Google Scholar 

  8. Myers K, Socrate S, Tzeranis D, House M . Changes in the biochemical constituents and morphologic appearance of the human cervical stroma during pregnancy. Eur J Obstet Gynecol Reprod Biol 2009; 144 (Suppl 1): S82–S89.

    Article  CAS  PubMed  Google Scholar 

  9. Wright TC, Ferenczy A . Anatomy and Histology of the Cervix of the female genital tract In: Kurman RJ (eds). 6th edn. Blaustein's Pathology, Springer-Verlag: New York, USA 2002; 207–224.

    Google Scholar 

  10. Molina FS, Gomez LF, Florido J, Padilla MC, Nicolaides KH . Quantification of cervical elastography: a reproducibility study. Ultrasound Obstet Gynecol 2012; 39 (6): 685–689.

    Article  CAS  PubMed  Google Scholar 

  11. Swiatkowska-Freund M, Preis K . Elastography of the uterine cervix: implications for success of induction of labor. Ultrasound Obstet Gynecol 2011; 38 (1): 52–56.

    Article  CAS  PubMed  Google Scholar 

  12. Hernandez-Andrade E, Hassan SS, Ahn H, Korzeniewski SJ, Yeo L, Chaiworapongsa T et al. Evaluation of cervical stiffness during pregnancy using semiquantitative ultrasound elastography. Ultrasound Obstet Gynecol 2013; 41 (2): 152–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hernandez-Andrade E, Romero R, Korzeniewski SJ, Ahn H, Aurioles-Garibay A, Garcia M et al. Cervical strain determined by ultrasound elastography and its association with spontaneous preterm delivery. J Perinat Med 2013; 20: 1–11.

    Google Scholar 

  14. Fruscalzo A, Londero AP, Frohlich C, Meyer-Wittkopf M, Schmitz R . Quantitative elastography of the cervix for predicting labor induction success. Ultraschall Med 2014; doi:10.1055/s-0033-1355572.

    Article  PubMed  Google Scholar 

  15. Fruscalzo A, Schmitz R . Quantitative cervical elastography in pregnancy. Ultrasound Obstet Gynecol 2012; 40 (5): 612.

    Article  CAS  PubMed  Google Scholar 

  16. Fruscalzo A, Schmitz R, Klockenbusch W, Steinhard J . Reliability of cervix elastography in the late first and second trimester of pregnancy. Ultraschall Med 2012; 33 (7): E101–E107.

    Article  CAS  PubMed  Google Scholar 

  17. Fruscalzo A, Steinhard J, Londero AP, Frohlich C, Bijnens B, Klockenbusch W et al. Reliability of quantitative elastography of the uterine cervix in at-term pregnancies. J Perinat Med 2013; 7: 1–7.

    Google Scholar 

  18. Fruscalzo A, Londero AP, Fröhlich C, Möllmann U, Schmitz R . Quantative elastography for cervical stiffness assessment during pregnancy. Biomed Res Int 2014; 2014: 1–9.

    Article  Google Scholar 

  19. Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T et al. Breast disease: clinical application of US elastography for diagnosis. Radiology 2006; 239 (2): 341–350.

    Article  PubMed  Google Scholar 

  20. Cespedes I, Ophir J, Ponnekanti H, Maklad N . Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo. Ultrason Imaging 1993; 15 (2): 73–88.

    Article  CAS  PubMed  Google Scholar 

  21. Xie M, Zhang X, Zhan J, Hua K . Application of Real-time Ultrasound Elastography for Discrimination of Low- and High-grade Serous Ovarian Carcinoma. J Ultrasound Med 2013; 32 (2): 257–262.

    Article  CAS  PubMed  Google Scholar 

  22. Wojcinski S, Dupont J, Schmidt W, Cassel M, Hillemanns P . Real-time ultrasound elastography in 180 axillary lymph nodes: elasticity distribution in healthy lymph nodes and prediction of breast cancer metastases. BMC Med Imaging 2012; 12: 35.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dudea SM, Giurgiu CR, Dumitriu D, Chiorean A, Ciurea A, Botar-Jid C et al. Value of ultrasound elastography in the diagnosis and management of prostate carcinoma. Med Ultrason 2011; 13 (1): 45–53.

    PubMed  Google Scholar 

  24. Sebag F, Vaillant-Lombard J, Berbis J, Griset V, Henry JF, Petit P et al. Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocrinol Metab 2010; 95 (12): 5281–5288.

    Article  CAS  PubMed  Google Scholar 

  25. Hennedige T, Venkatesh SK . Imaging of hepatocellular carcinoma: diagnosis, staging and treatment monitoring. Cancer Imaging 2013; 12 (3): 530–547.

    Article  PubMed  PubMed Central  Google Scholar 

  26. D'hooge J, Bijnens B, Thoen J, Van de Werf F, Sutherland GR, Suetens P . Echocardiographic strain and strain-rate imaging: a new tool to study regional myocardial function. IEEE Trans Med Imaging 2002; 21 (9): 1022–1030.

    Article  PubMed  Google Scholar 

  27. D'hooge J, Heimdal A, Jamal F, Kukulski T, Bijnens B, Rademakers F et al. Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur J Echocardiogr 2000; 1 (3): 154–170.

    Article  CAS  PubMed  Google Scholar 

  28. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X . Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 1991; 13 (2): 111–134.

    Article  CAS  PubMed  Google Scholar 

  29. Palmeri ML, Nightingale KR . What challenges must be overcome before ultrasound elasticity imaging is ready for the clinic? Imaging Med 2011; 3 (4): 433–444.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Garra BS . Elastography: current status, future prospects, and making it work for you. Ultrasound Q 2011; 27 (3): 177–186.

    Article  PubMed  Google Scholar 

  31. Burger M, Weber-Rossler T, Willmann M . Measurement of the pregnant cervix by transvaginal sonography: an interobserver study and new standards to improve the interobserver variability. Ultrasound Obstet Gynecol 1997; 9 (3): 188–193.

    Article  CAS  PubMed  Google Scholar 

  32. Iams JD . Cervical ultrasonography. Ultrasound Obstet Gynecol 1997; 10 (3): 156–160.

    Article  CAS  PubMed  Google Scholar 

  33. D’hooge J, Rademakers F . Doppler myocardial imaging, A textbook In: Sutherland GR, Hatle L, Claus P, D’hooge J, Bijnens B (eds) BSWK Scientific Consulting and Publishing: Hasselt-Belgium, 2006; pp 5–18.

    Google Scholar 

  34. Fleiss JL . Reliability of Measurement. The Design and Analysis of Clinical Experiments. John Wiley & Sons, Inc: Hoboken, NJ, USA, 1999, pp 1–32.

    Book  Google Scholar 

  35. Akaike H . Data analysis by statistical models. No To Hattatsu 1992; 24 (2): 127–133.

    CAS  PubMed  Google Scholar 

  36. Latif M, Hossain Z, Islam A . Model selection using modified Akaike’s Information criterion: an application to maternal morbidity data. AJS 2008; 37 (82): 175–184.

    Google Scholar 

  37. Mann HB, Whitney DR . On a test of whether one of two random variable is stochastically larger than the other. Ann Math Statist 1947; 18 (1): 50–60.

    Article  Google Scholar 

  38. Peng CYJ . An introduction to logistic regression analysis and reporting. J Educ Res 2002; 96 (1): 3.

    Article  Google Scholar 

  39. Antipov E, Pokryshevskaya E . Applying CHAID for logistic regression diagnostics and classification accuracy improvement. J Target Meas Anal Market 2010; 18 (2) 109–117.

    Article  Google Scholar 

  40. Fawcett T . An introduction to ROC analysis. Pattern Recog Lett 2006; 27 (8): 861–874.

    Article  Google Scholar 

  41. Buckingham JC, Buethe RA Jr, Danforth DN . Collagen-muscle ratio in clinically normal and clinically incompetent cervices. Am J Obstet Gynecol 1965; 91: 232–237.

    Article  CAS  PubMed  Google Scholar 

  42. House M, Kaplan DL, Socrate S . Relationships between mechanical properties and extracellular matrix constituents of the cervical stroma during pregnancy. Semin Perinatol 2009; 33 (5): 300–307.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fruscalzo A, Schmitz R . Reply. Ultrasound Obstet Gynecol 2013; 41 (6): 712–714.

    Article  CAS  PubMed  Google Scholar 

  44. Barone WR, Feola AJ, Moalli PA, Abramowitch SD . The effect of pregnancy and postpartum recovery on the viscoelastic behavior of the rat cervix. J Mech Med Biol 2012; 12 (1): 12500091–125000917.

    Article  PubMed  Google Scholar 

  45. Berghella V, Baxter JK, Hendrix NW . Cervical assessment by ultrasound for preventing preterm delivery. Cochrane Database Syst Rev 2013; 1: CD007235.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K Köbbing or R Schmitz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köbbing, K., Fruscalzo, A., Hammer, K. et al. Quantitative Elastography of the uterine cervix as a predictor of preterm delivery. J Perinatol 34, 774–780 (2014). https://doi.org/10.1038/jp.2014.87

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2014.87

This article is cited by

Search

Quick links