Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Genome profiling of acute myelomonocytic leukemia: alteration of the MYB locus in MYST3-linked cases

Abstract

The t(8;16)(p11;p13) is a rare translocation involved in de novo and therapy-related myelomonocytic and monocytic acute leukemia. It fuses two genes encoding histone acetyltransferases (HATs), MYST3 located at 8p11 to CREBBP located at 16p13. Variant translocations involve other HAT-encoding genes such as EP300, MYST4, NCOA2 or NCOA3. MYST3-linked acute myeloid leukemias (AMLs) share specific clinical and biological features and a poor prognosis. Because of its rarity, the molecular biology of MYST3-linked AMLs remains poorly understood. We have established the genome and gene expression profiles of a multicentric series of 61 M4/M5 AMLs including 18 MYST3-linked AMLs by using array comparative genome hybridization (aCGH) (n=52) and DNA microarrays (n=44), respectively. We show that M4/5 AMLs have a variety of rare genomic alterations. One alteration, a gain of the MYB locus, was found recurrently and only in the MYST3-linked AMLs (7/18 vs 0/34). MYST3-AMLs have also a specific a gene expression profile, which includes overexpression of MYB, CD4 and HOXA genes. These features, reminiscent of T-cell acute lymphoid leukemia (ALL), suggest the targeting of a common T-myeloid progenitor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Aguiar RC, Chase A, Coulthard S, Macdonald DH, Carapeti M, Reiter A et al. Abnormalities of chromosome band 8p11 in leukemia: two clinical syndromes can be distinguished on the basis of MOZ involvement. Blood 1997; 90: 3130–3135.

    CAS  PubMed  Google Scholar 

  2. Borrow J, Stanton Jr VP, Andresen JM, Becher R, Behm FG, Chaganti RS et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 1996; 14: 33–41.

    Article  CAS  PubMed  Google Scholar 

  3. Giles RH, Dauwerse JG, Higgins C, Petrij F, Wessels JW, Beverstock GC et al. Detection of CBP rearrangements in acute myelogenous leukemia with t(8;16). Leukemia 1997; 11: 2087–2096.

    Article  CAS  PubMed  Google Scholar 

  4. Chaffanet M, Gressin L, Preudhomme C, Soenen-Cornu V, Birnbaum D, Pébusque MJ . MOZ is fused to p300 in an acute monocytic leukemia with t(8;22). Genes Chromosomes Cancer 2000; 28: 138–144.

    Article  CAS  PubMed  Google Scholar 

  5. Murati A, Adélaide J, Mozziconacci MJ, Popovici C, Carbuccia N, Letessier A et al. Variant MYST4-CBP gene fusion in a t(10;16) acute myeloid leukaemia. Br J Haematol 2004; 125: 601–604.

    Article  CAS  PubMed  Google Scholar 

  6. Esteyries S, Perot C, Adélaide J, Imbert M, Lagarde A, Pautas C et al. NCOA3, a new fusion partner for MOZ/MYST3 in M5 acute myeloid leukemia. Leukemia 2008; 22: 663–665.

    Article  CAS  PubMed  Google Scholar 

  7. Gervais C, Murati A, Helias C, Struski S, Eischen A, Lippert E et al. Acute Myeloid Leukemia with 8p11 (MYST3) translocation: cytologic, cytogenetic and molecular studies of 30 cases. Leukemia 2008; 22: 1567–1575.

    Article  CAS  PubMed  Google Scholar 

  8. Tasaka T, Matsuhashi Y, Uehara E, Tamura T, Kakazu N, Abe T et al. Secondary acute monocytic leukemia with a translocation t(8;16)(p11;p13): case report and review of the literature. Leuk Lymphoma 2004; 45: 621–625.

    Article  PubMed  Google Scholar 

  9. Troke PJ, Kindle KB, Collins HM, Heery DM . MOZ fusion proteins in acute myeloid leukaemia. Biochem Soc Symp 2006; 73: 23–39.

    Article  CAS  Google Scholar 

  10. Camos M, Esteve J, Jares P, Colomer D, Rozman M, Villamor N et al. Gene expression profiling of acute myeloid leukemia with translocation t(8;16)(p11;p13) and MYST3-CREBBP rearrangement reveals a distinctive signature with a specific pattern of HOX gene expression. Cancer Res 2006; 66: 6947–6954.

    Article  CAS  PubMed  Google Scholar 

  11. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol 1976; 33: 451–458.

    Article  CAS  PubMed  Google Scholar 

  12. Jaffe ES, Harris NL, Stein H, Vardiman JW . World Health Organization Classification of Tumors: Pathology and Genetics of Tumor of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, 2001, p 352.

    Google Scholar 

  13. Chaffanet M, Mozziconacci MJ, Fernandez F, Sainty D, Lafage-Pochitaloff M, Birnbaum D et al. A case of inv(8)(p11q24) associated with acute myeloid leukemia involves the MOZ and CBP genes in a masked t(8;16). Genes Chromosomes Cancer 1999; 26: 161–165.

    Article  CAS  PubMed  Google Scholar 

  14. Murati A, Adélaide J, Popovici C, Mozziconacci MJ, Arnoulet C, Lafage-Pochitaloff M et al. A further case of acute myelomonocytic leukemia with inv(8) chromosomal rearrangement and MOZ-NCOA2 gene fusion. Int J Mol Med 2003; 12: 423–428.

    CAS  PubMed  Google Scholar 

  15. Adélaide J, Finetti P, Bekhouche I, Repellini L, Geneix J, Sircoulomb F et al. Integrated profiling of basal and luminal breast cancers. Cancer Res 2007; 67: 11565–11575.

    Article  PubMed  Google Scholar 

  16. Bertucci F, Finetti P, Cervera N, Charafe-Jauffret E, Mamessier E, Adélaide J et al. Gene expression profiling shows medullary breast cancer is a subgroup of basal breast cancers. Cancer Res 2006; 66: 4636–4644.

    Article  CAS  PubMed  Google Scholar 

  17. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.

    Article  PubMed  Google Scholar 

  18. Liu TX, Becker MW, Jelinek J, Wu WS, Deng M, Mikhalkevich N et al. Chromosome 5q deletion and epigenetic suppression of the gene encoding alpha-catenin (CTNNA1) in myeloid cell transformation. Nat Med 2007; 13: 78–83.

    Article  PubMed  Google Scholar 

  19. Lorsbach RB, Moore J, Mathew S, Raimondi SC, Mukatira ST, Downing JR . TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 2003; 17: 637–641.

    Article  CAS  PubMed  Google Scholar 

  20. Ono R, Taki T, Taketani T, Taniwaki M, Kobayashi H, Hayashi Y . LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res 2002; 62: 4075–4080.

    CAS  PubMed  Google Scholar 

  21. Allen MD, Grummitt CG, Hilcenko C, Min SY, Tonkin LM, Johnson CM et al. Solution structure of the nonmethyl-CpG-binding CXXC domain of the leukaemia-associated MLL histone methyltransferase. EMBO J 2006; 25: 4503–4512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sakamoto Y, Watanabe S, Ichimura T, Kawasuji M, Koseki H, Baba H et al. Overlapping roles of the methylated DNA-binding protein MBD1 and polycomb group proteins in transcriptional repression of HOXA genes and heterochromatin foci formation. J Biol Chem 2007; 282: 16391–16400.

    Article  CAS  PubMed  Google Scholar 

  23. Kathrein KL, Chari S, Winandy S . Ikaros directly represses the notch target gene Hes1 in a leukemia T cell line: implications for CD4 regulation. J Biol Chem 2008; 283: 10476–10484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446: 758–764.

    Article  CAS  PubMed  Google Scholar 

  25. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J et al. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008; 453: 110–114.

    Article  CAS  PubMed  Google Scholar 

  26. Clappier E, Cuccuini W, Kalota A, Crinquette A, Cayuela JM, Dik WA et al. The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood 2007; 110: 1251–1261.

    Article  CAS  PubMed  Google Scholar 

  27. Lahortiga I, De Keersmaecker K, Van Vlierberghe P, Graux C, Cauwelier B, Lambert F et al. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet 2007; 39: 593–595.

    Article  CAS  PubMed  Google Scholar 

  28. Dvorakova M, Kralova J, Karafiat V, Bartunek P, Dvorak M . An ex vivo model to study v-Myb-induced leukemogenicity. Blood Cells Mol Dis 2001; 27: 437–445.

    Article  CAS  PubMed  Google Scholar 

  29. Fu SL, Lipsick JS . Constitutive expression of full-length c-Myb transforms avian cells characteristic of both the monocytic and granulocytic lineages. Cell Growth Differ 1997; 8: 35–45.

    CAS  PubMed  Google Scholar 

  30. Yanagisawa H, Nagasawa T, Kuramochi S, Abe T, Ikawa Y, Todokoro K . Constitutive expression of exogenous c-myb gene causes maturation block in monocyte-macrophage differentiation. Biochim Biophys Acta 1991; 1088: 380–384.

    Article  CAS  PubMed  Google Scholar 

  31. Lieu YK, Kumar A, Pajerowski AG, Rogers TJ, Reddy EP . Requirement of c-myb in T cell development and in mature T cell function. Proc Natl Acad Sci USA 2004; 101: 14853–14858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fung SM, Ramsay G, Katzen AL . MYB and CBP: physiological relevance of a biochemical interaction. Mech Dev 2003; 120: 711–720.

    Article  CAS  PubMed  Google Scholar 

  33. Oelgeschlager M, Janknecht R, Krieg J, Schreek S, Luscher B . Interaction of the co-activator CBP with Myb proteins: effects on Myb-specific transactivation and on the cooperativity with NF-M. EMBO J 1996; 15: 2771–2780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramsay RG . c-Myb a stem-progenitor cell regulator in multiple tissue compartments. Growth Factors 2005; 23: 253–261.

    Article  CAS  PubMed  Google Scholar 

  35. Sandberg ML, Sutton SE, Pletcher MT, Wiltshire T, Tarantino LM, Hogenesch JB et al. c-Myb and p300 regulate hematopoietic stem cell proliferation and differentiation. Dev Cell 2005; 8: 153–166.

    Article  CAS  PubMed  Google Scholar 

  36. Hess JL, Bittner CB, Zeisig DT, Bach C, Fuchs U, Borkhardt A et al. c-Myb is an essential downstream target for homeobox-mediated transformation of hematopoietic cells. Blood 2006; 108: 297–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Calvo KR, Sykes DB, Pasillas M, Kamps MP . Hoxa9 immortalizes a granulocyte-macrophage colony-stimulating factor-dependent promyelocyte capable of biphenotypic differentiation to neutrophils or macrophages, independent of enforced meis expression. Mol Cell Biol 2000; 20: 3274–3285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nakamura T, Largaespada DA, Lee MP, Johnson LA, Ohyashiki K, Toyama K et al. Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet 1996; 12: 154–158.

    Article  CAS  PubMed  Google Scholar 

  39. Ayton PM, Cleary ML . Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 2003; 17: 2298–2307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dorrance AM, Liu S, Yuan W, Becknell B, Arnoczky KJ, Guimond M et al. Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations. J Clin Invest 2006; 116: 2707–2716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kawagoe H, Humphries RK, Blair A, Sutherland HJ, Hogge DE . Expression of HOX genes, HOX cofactors, and MLL in phenotypically and functionally defined subpopulations of leukemic and normal human hematopoietic cells. Leukemia 1999; 13: 687–698.

    Article  CAS  PubMed  Google Scholar 

  42. Krivtsov AV, Armstrong SA . MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 2007; 7: 823–833.

    Article  CAS  PubMed  Google Scholar 

  43. Milne TA, Martin ME, Brock HW, Slany RK, Hess JL . Leukemogenic MLL fusion proteins bind across a broad region of the Hox a9 locus, promoting transcription and multiple histone modifications. Cancer Res 2005; 65: 11367–11374.

    Article  CAS  PubMed  Google Scholar 

  44. Zeisig BB, Milne T, Garcia-Cuellar MP, Schreiner S, Martin ME, Fuchs U et al. Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol Cell Biol 2004; 24: 617–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Argiropoulos B, Humphries RK . Hox genes in hematopoiesis and leukemogenesis. Oncogene 2007; 26: 6766–6776.

    Article  CAS  PubMed  Google Scholar 

  46. Eklund EA, Goldenberg I, Lu Y, Andrejic J, Kakar R . SHP1 protein-tyrosine phosphatase regulates HoxA10 DNA binding and transcriptional repression activity in undifferentiated myeloid cells. J Biol Chem 2002; 277: 36878–36888.

    Article  CAS  PubMed  Google Scholar 

  47. Dik WA, Brahim W, Braun C, Asnafi V, Dastugue N, Bernard OA et al. CALM-AF10+ T-ALL expression profiles are characterized by overexpression of HOXA and BMI1 oncogenes. Leukemia 2005; 19: 1948–1957.

    Article  CAS  PubMed  Google Scholar 

  48. Bell JJ, Bhandoola A . The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature 2008; 452: 764–767.

    Article  CAS  PubMed  Google Scholar 

  49. Wada H, Masuda K, Satoh R, Kakugawa K, Ikawa T, Katsura Y et al. Adult T-cell progenitors retain myeloid potential. Nature 2008; 452: 768–772.

    Article  CAS  PubMed  Google Scholar 

  50. Friedman AD . Transcriptional regulation of granulocyte and monocyte development. Oncogene 2002; 21: 3377–3390.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Inserm, Institut Paoli-Calmettes and grants from Association pour la Recherche sur le Cancer (2007; AM).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to D Birnbaum.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murati, A., Gervais, C., Carbuccia, N. et al. Genome profiling of acute myelomonocytic leukemia: alteration of the MYB locus in MYST3-linked cases. Leukemia 23, 85–94 (2009). https://doi.org/10.1038/leu.2008.257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.257

Keywords

This article is cited by

Search

Quick links