Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Apoptosis

Glucocorticoid-regulated microRNAs and mirtrons in acute lymphoblastic leukemia

Abstract

Glucocorticoids (GCs) induce apoptosis in lymphoid lineage cells and are therefore used in the therapy of acute lymphoblastic leukemia (ALL) and related malignancies. MicroRNAs (miRNAs) and the related mirtrons are 22 nucleotide RNAs derived from polymerase-II transcripts and implicated in the control of essential biological functions, including apoptosis. Whether GCs regulate miRNA-encoding transcription units is unknown. We investigated miRNA/mirtron expression and GC regulation in 8 leukemia/lymphoma in vitro models and 13 ALL children undergoing systemic GC monotherapy using a combination of expression profiling techniques, real time reverse transcription (RT)-PCR and northern blotting to detect mature miRNAs and/or their precursors. We found that mature miRNA regulations can be inferred from expression data of their host genes. Although a simple miRNA-initiated canonical pathway to GC-induced apoptosis or cell cycle arrest did not emerge, we identified several miRNAs/mirtrons that were regulated by GC in patients and cell lines, including the myeloid-specific miR-223 and the apoptosis and cell cycle arrest-inducing miR1516 clusters. In an in vitro model, overexpression of miR15b16 mimics increased and silencing by miR15b16 inhibitors decreased GC sensitivity. Thus, the observed complex changes in miRNA/mirtron expression during GC treatment might contribute to the anti-leukemic GC effects in a cell context-dependent manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ashwell JD, Lu FW, Vacchio MS . Glucocorticoids in T cell development and function. Annu Rev Immunol 2000; 18: 309–345.

    Article  CAS  PubMed  Google Scholar 

  2. Schaaf MJ, Cidlowski JA . Molecular mechanisms of glucocorticoid action and resistance. J Steroid Biochem Mol Biol 2002; 83: 37–48.

    Article  CAS  PubMed  Google Scholar 

  3. Jondal M, Pazirandeh A, Okret S . A role for glucocorticoids in the thymus? Trends Immunol 2001; 22: 185–186.

    Article  CAS  PubMed  Google Scholar 

  4. Pui CH, Relling MV, Downing JR . Acute lymphoblastic leukemia. N Engl J Med 2004; 350: 1535–1548.

    Article  CAS  PubMed  Google Scholar 

  5. Laudet V, Gronemeyer H . The nuclear receptor facts book. Academic Press: London, 2002, pp 345–368.

    Book  Google Scholar 

  6. Schmidt S, Rainer J, Ploner C, Presul E, Riml S, Kofler R . Glucocorticoid-induced apoptosis and glucocorticoid resistance: Molecular mechanisms and clinical relevance. Cell Death Differ 2004; 11 (Suppl 1): S45–S55.

    Article  CAS  PubMed  Google Scholar 

  7. Schmidt S, Rainer J, Riml S, Ploner C, Jesacher S, Achmüller C et al. Identification of glucocorticoid response genes in children with acute lymphoblastic leukemia. Blood 2006; 107: 2061–2069.

    Article  CAS  PubMed  Google Scholar 

  8. Tissing WJ, den Boer ML, Meijerink JP, Menezes RX, Swagemakers S, van der Spek PJ et al. Genome-wide identification of prednisolone-responsive genes in acute lymphoblastic leukemia cells. Blood 2007; 109: 3929–3935.

    Article  CAS  PubMed  Google Scholar 

  9. Distelhorst CW . Recent insights into the mechanism of glucocorticosteroid-induced apoptosis. Cell Death Differ 2002; 9: 6–19.

    Article  CAS  PubMed  Google Scholar 

  10. Haarman EG, Kaspers GJ, Veerman AJ . Glucocorticoid resistance in childhood leukaemia: mechanisms and modulation. Br J Haematol 2003; 120: 919–929.

    Article  CAS  PubMed  Google Scholar 

  11. Kim VN, Nam JW . Genomics of microRNA. Trends Genet 2006; 22: 165–173.

    Article  CAS  PubMed  Google Scholar 

  12. Filipowicz W, Bhattacharyya SN, Sonenberg N . Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9: 102–114.

    Article  CAS  PubMed  Google Scholar 

  13. Grosshans H, Filipowicz W . Molecular biology: the expanding world of small RNAs. Nature 2008; 451: 414–416.

    Article  CAS  PubMed  Google Scholar 

  14. Cullen BR . Transcription and processing of human microRNA precursors. Mol Cell 2004; 16: 861–865.

    Article  CAS  PubMed  Google Scholar 

  15. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  16. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129: 1401–1414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A . Identification of mammalian microRNA host genes and transcription units. Genome Res 2004; 14: 1902–1910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ruby JG, Jan CH, Bartel DP . Intronic microRNA precursors that bypass Drosha processing. Nature 2007; 448: 83–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berezikov E, Chung WJ, Willis J, Cuppen E, Lai EC . Mammalian mirtron genes. Mol Cell 2007; 28: 328–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC . The Mirtron Pathway Generates microRNA-Class Regulatory RNAs in Drosophila. Cell 2007; 130: 89–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu L, Belasco JG . Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol Cell 2008; 29: 1–7.

    Article  PubMed  Google Scholar 

  22. Buchan JR, Parker R . Molecular biology. The two faces of miRNA. Science 2007; 318: 1877–1878.

    Article  CAS  PubMed  Google Scholar 

  23. Calin GA, Croce CM . Investigation of microRNA alterations in leukemias and lymphomas. Methods Enzymol 2007; 427: 191–213.

    Article  Google Scholar 

  24. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866.

    Article  CAS  PubMed  Google Scholar 

  25. Cummins JM, He Y, Leary RJ, Pagliarini R, Diaz Jr LA, Sjoblom T et al. The colorectal microRNAome. Proc Natl Acad Sci USA 2006; 103: 3687–3692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99: 15524–15529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Raveche ES, Salerno E, Scaglione BJ, Manohar V, Abbasi F, Lin YC et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood 2007; 109: 5079–5086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944–13949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 2007; 27: 2240–2252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang W, Chendrimada TP, Wang Q, Higuchi M, Seeburg PH, Shiekhattar R et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 2006; 13: 13–21.

    Article  CAS  PubMed  Google Scholar 

  31. Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM . Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 2006; 20: 2202–2207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ploner C, Rainer J, Niederegger H, Eduardoff M, Villunger A, Geley S et al. The BCL2 rheostat in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia. Leukemia 2008; 22: 370–377.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs S Geley, A Hüttenhofer, B Meister and S Schmidt for stimulating discussions; M Brunner, A Kofler, S Lobenwein and C Mantinger for technical help; and MK Occhipinti-Bender for editing. This study was supported by grants from the Austrian Science Fund (SFB-F021, P18747, P18571) and the Austrian Ministry for Education, Science and Culture (GENAU-Ch.I.L.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Kofler.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rainer, J., Ploner, C., Jesacher, S. et al. Glucocorticoid-regulated microRNAs and mirtrons in acute lymphoblastic leukemia. Leukemia 23, 746–752 (2009). https://doi.org/10.1038/leu.2008.370

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.370

Keywords

This article is cited by

Search

Quick links