Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Interleukin-21 effectively induces apoptosis in mantle cell lymphoma through a STAT1-dependent mechanism

Abstract

Interleukin-21 (IL-21) has been recently shown to modulate the growth of specific types of B-cell neoplasm. Here, we studied the biological effects of IL-21 in mantle cell lymphoma (MCL). All MCL cell lines and tumors examined expressed the IL-21 receptor. Addition of recombinant IL-21 (rIL-21) in vitro effectively induced STAT1 activation and apoptosis in MCL cells. As STAT1 is known to have tumor-suppressor functions, we hypothesized that STAT1 is important in mediating IL-21-induced apoptosis in MCL cells. In support of this hypothesis, inhibition of STAT1 expression using siRNA significantly decreased the apoptotic responses induced by IL-21. To further investigate the mechanism of IL-21-mediated apoptosis, we employed oligonucleotide arrays to evaluate changes in the expression of apoptosis-related genes induced by rIL-21; rIL-21 significantly upregulated three proapoptotic proteins (BIK, NIP3 and HARAKIRI) and downregulated two antiapoptotic proteins (BCL-2 and BCL-XL/S) as well as tumor necrosis factor-α. Using an ELISA-based assay, we demonstrated that rIL-21 significantly decreased the DNA binding of nuclear factor-κB, a transcriptional factor known to be a survival signal for MCL cells. To conclude, IL-21 can effectively induce apoptosis in MCL via a STAT1-dependent pathway. Further understanding of IL-21-mediated apoptosis in MCL may be useful in designing novel therapeutic approaches for this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. Classification of Tumours of Haematopoietic and Lymphoid Tissues, Fourth Edition. WHO Classification of Tumours, Volume 2 IARC 2008; 2: 229–232.

    Google Scholar 

  2. Smith MR . Mantle cell lymphoma: advances in biology and therapy. Curr Opin Hematol 2008; 15: 415–421.

    Article  CAS  PubMed  Google Scholar 

  3. Jares P, Colomer D, Campo E . Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer 2007; 7: 750–762.

    Article  CAS  PubMed  Google Scholar 

  4. Pham LV, Tamayo AT, Yoshimura LC, Lo P, Ford RJ . Inhibition of constitutive NF-kappa B activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis. J Immunol 2003; 171: 88–95.

    Article  CAS  PubMed  Google Scholar 

  5. Martinez N, Camacho FI, Algara P, Rodriguez A, Dopazo A, Ruiz-Ballesteros E et al. The molecular signature of mantle cell lymphoma reveals multiple signals favoring cell survival. Cancer Res 2003; 63: 8226–8232.

    CAS  PubMed  Google Scholar 

  6. Roue G, Perez-Galan P, Lopez-Guerra M, Villamor N, Campo E, Colomer D . Selective inhibition of IkappaB kinase sensitizes mantle cell lymphoma B cells to TRAIL by decreasing cellular FLIP level. J Immunol 2007; 178: 1923–1930.

    Article  CAS  PubMed  Google Scholar 

  7. Shishodia S, Amin HM, Lai R, Aggarwal BB . Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem Pharmacol 2005; 70: 700–713.

    Article  CAS  PubMed  Google Scholar 

  8. Tucker CA, Kapanen AI, Chikh G, Hoffman BG, Kyle AH, Wilson IM et al. Silencing Bcl-2 in models of mantle cell lymphoma is associated with decreases in cyclin D1, nuclear factor-kappaB, p53, bax, and p27 levels. Mol Cancer Ther 2008; 7: 749–758.

    Article  CAS  PubMed  Google Scholar 

  9. Fu L, Lin-Lee YC, Pham LV, Tamayo A, Yoshimura L, Ford RJ . Constitutive NF-kappaB and NFAT activation leads to stimulation of the BLyS survival pathway in aggressive B-cell lymphomas. Blood 2006; 107: 4540–4548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dal Col J, Zancai P, Terrin L, Guidoboni M, Ponzoni M, Pavan A et al. Distinct functional significance of Akt and mTOR constitutive activation in mantle cell lymphoma. Blood 2008; 111: 5142–5151.

    Article  CAS  PubMed  Google Scholar 

  11. Rudelius M, Pittaluga S, Nishizuka S, Pham TH, Fend F, Jaffe ES et al. Constitutive activation of Akt contributes to the pathogenesis and survival of mantle cell lymphoma. Blood 2006; 108: 1668–1676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rizzatti EG, Falcao RP, Panepucci RA, Proto-Siqueira R, Anselmo-Lima WT, Okamoto OK et al. Gene expression profiling of mantle cell lymphoma cells reveals aberrant expression of genes from the PI3K-AKT, WNT and TGFbeta signalling pathways. Br J Haematol 2005; 130: 516–526.

    Article  CAS  PubMed  Google Scholar 

  13. Rizzatti EG, Mora-Jensen H, Weniger MA, Gibellini F, Lee E, Daibata M et al. Noxa mediates bortezomib induced apoptosis in both sensitive and intrinsically resistant mantle cell lymphoma cells and this effect is independent of constitutive activity of the AKT and NF-kappaB pathways. Leuk Lymphoma 2008; 49: 798–808.

    Article  CAS  PubMed  Google Scholar 

  14. Gill S, Ritchie D . Therapeutic options in mantle cell lymphoma. Leuk Lymphoma 2008; 49: 398–409.

    Article  CAS  PubMed  Google Scholar 

  15. Mehta DS, Wurster AL, Grusby MJ . Biology of IL-21 and the IL-21 receptor. Immunol Rev 2004; 202: 84–95.

    Article  CAS  PubMed  Google Scholar 

  16. Asao H, Okuyama C, Kumaki S, Ishii N, Tsuchiya S, Foster D et al. Cutting edge: the common gamma-chain is an indispensable subunit of the IL-21 receptor complex. J Immunol 2001; 167: 1–5.

    Article  CAS  PubMed  Google Scholar 

  17. Habib T, Senadheera S, Weinberg K, Kaushansky K . The common gamma chain (gamma c) is a required signaling component of the IL-21 receptor and supports IL-21-induced cell proliferation via JAK3. Biochemistry 2002; 41: 8725–8731.

    Article  CAS  PubMed  Google Scholar 

  18. Suto A, Nakajima H, Hirose K, Suzuki K, Kagami S, Seto Y et al. Interleukin 21 prevents antigen-induced IgE production by inhibiting germ line C(epsilon) transcription of IL-4-stimulated B cells. Blood 2002; 100: 4565–4573.

    Article  CAS  PubMed  Google Scholar 

  19. Habib T, Nelson A, Kaushansky K . IL-21: a novel IL-2-family lymphokine that modulates B, T, and natural killer cell responses. J Allergy Clin Immunol 2003; 112: 1033–1045.

    Article  CAS  PubMed  Google Scholar 

  20. Mehta DS, Wurster AL, Whitters MJ, Young DA, Collins M, Grusby MJ . IL-21 induces the apoptosis of resting and activated primary B cells. J Immunol 2003; 170: 4111–4118.

    Article  CAS  PubMed  Google Scholar 

  21. Pene J, Gauchat JF, Lecart S, Drouet E, Guglielmi P, Boulay V et al. Cutting edge: IL-21 is a switch factor for the production of IgG1 and IgG3 by human B cells. J Immunol 2004; 172: 5154–5157.

    Article  CAS  PubMed  Google Scholar 

  22. Kolb JP . IL-21 as new therapy for CLL? Blood 2008; 111: 4424–4425.

    Article  CAS  PubMed  Google Scholar 

  23. Gowda A, Roda J, Hussain SR, Ramanunni A, Joshi T, Schmidt S et al. IL-21 mediates apoptosis through up-regulation of the BH3 family member BIM and enhances both direct and antibody-dependent cellular cytotoxicity in primary chronic lymphocytic leukemia cells in vitro. Blood 2008; 111: 4723–4730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Akamatsu N, Yamada Y, Hasegawa H, Makabe K, Asano R, Kumagai I et al. High IL-21 receptor expression and apoptosis induction by IL-21 in follicular lymphoma. Cancer Lett 2007; 256: 196–206.

    Article  CAS  PubMed  Google Scholar 

  25. Brenne AT, Ro TB, Waage A, Sundan A, Borset M, Hjorth-Hansen H . Interleukin-21 is a growth and survival factor for human myeloma cells. Blood 2002; 99: 3756–3762.

    Article  CAS  PubMed  Google Scholar 

  26. Amin HM, McDonnell TJ, Medeiros LJ, Rassidakis GZ, Leventaki V, O’Connor SL et al. Characterization of 4 mantle cell lymphoma cell lines. Arch Pathol Lab Med 2003; 127: 424–431.

    PubMed  Google Scholar 

  27. Salaverria I, Perez-Galan P, Colomer D, Campo E . Mantle cell lymphoma: from pathology and molecular pathogenesis to new therapeutic perspectives. Haematologica 2006; 91: 11–16.

    CAS  PubMed  Google Scholar 

  28. Bard JD, Gelebart P, Anand M, Amin HM, Lai R . Aberrant expression of IL-22 receptor 1 and autocrine IL-22 stimulation contribute to tumorigenicity in ALK(+) anaplastic large cell lymphoma. Leukemia 2008; 22: 1595–1603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zamzami N, Marchetti P, Castedo M, Zanin C, Vayssiere JL, Petit PX et al. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med 1995; 181: 1661–1672.

    Article  CAS  PubMed  Google Scholar 

  30. Ueda M, Imada K, Imura A, Koga H, Hishizawa M, Uchiyama T . Expression of functional interleukin-21 receptor on adult T-cell leukaemia cells. Br J Haematol 2005; 128: 169–176.

    Article  CAS  PubMed  Google Scholar 

  31. Kim HS, Lee MS . STAT1 as a key modulator of cell death. Cell Signal 2007; 19: 454–465.

    Article  CAS  PubMed  Google Scholar 

  32. Good KL, Bryant VL, Tangye SG . Kinetics of human B cell behavior and amplification of proliferative responses following stimulation with IL-21. J Immunol 2006; 177: 5236–5247.

    Article  CAS  PubMed  Google Scholar 

  33. Barker BR, Parvani JG, Meyer D, Hey AS, Skak K, Letvin NL . IL-21 induces apoptosis of antigen-specific CD8+ T lymphocytes. J Immunol 2007; 179: 3596–3603.

    Article  CAS  PubMed  Google Scholar 

  34. Frank DA . STAT3 as a central mediator of neoplastic cellular transformation. Cancer Lett 2007; 251: 199–210.

    Article  CAS  PubMed  Google Scholar 

  35. Pimentel-Muinos FX, Seed B . Regulated commitment of TNF receptor signaling: a molecular switch for death or activation. Immunity 1999; 11: 783–793.

    Article  CAS  PubMed  Google Scholar 

  36. Jiang A, Clark EA . Involvement of Bik, a proapoptotic member of the Bcl-2 family, in surface IgM-mediated B cell apoptosis. J Immunol 2001; 166: 6025–6033.

    Article  CAS  PubMed  Google Scholar 

  37. Bruick RK . Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci USA 2000; 97: 9082–9087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Inohara N, Ding L, Chen S, Nunez G . harakiri, a novel regulator of cell death, encodes a protein that activates apoptosis and interacts selectively with survival-promoting proteins Bcl-2 and Bcl-X(L). EMBO J 1997; 16: 1686–1694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao X, Sun Y, Yu H, Ye L, Zhang L, Lu J et al. Apoptosis induced by BIK was decreased with RNA interference of caspase-12. Biochem Biophys Res Commun 2007; 359: 896–901.

    Article  CAS  PubMed  Google Scholar 

  40. Shimazu T, Degenhardt K, Nur EKA, Zhang J, Yoshida T, Zhang Y et al. NBK/BIK antagonizes MCL-1 and BCL-XL and activates BAK-mediated apoptosis in response to protein synthesis inhibition. Genes Dev 2007; 21: 929–941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhu H, Zhang L, Dong F, Guo W, Wu S, Teraishi F et al. Bik/NBK accumulation correlates with apoptosis-induction by bortezomib (PS-341, Velcade) and other proteasome inhibitors. Oncogene 2005; 24: 4993–4999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arena V, Martini M, Luongo M, Capelli A, Larocca LM . Mutations of the BIK gene in human peripheral B-cell lymphomas. Genes Chromosomes Cancer 2003; 38: 91–96.

    Article  CAS  PubMed  Google Scholar 

  43. Jin H, Carrio R, Yu A, Malek TR . Distinct activation signals determine whether IL-21 induces B cell costimulation, growth arrest, or Bim-dependent apoptosis. J Immunol 2004; 173: 657–665.

    Article  CAS  PubMed  Google Scholar 

  44. Herrin BR, Justement LB . Expression of the adaptor protein hematopoietic Src homology 2 is up-regulated in response to stimuli that promote survival and differentiation of B cells. J Immunol 2006; 176: 4163–4172.

    Article  CAS  PubMed  Google Scholar 

  45. Tagawa H, Karnan S, Suzuki R, Matsuo K, Zhang X, Ota A et al. Genome-wide array-based CGH for mantle cell lymphoma: identification of homozygous deletions of the proapoptotic gene BIM. Oncogene 2005; 24: 1348–1358.

    Article  CAS  PubMed  Google Scholar 

  46. Iannello A, Tremblay C, Routy JP, Boulassel MR, Toma E, Ahmad A . Decreased levels of circulating IL-21 in HIV-infected AIDS patients: correlation with CD4+ T-cell counts. Viral Immunol 2008; 21: 385–388.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is supported by research grants from the Alberta Cancer Foundation and the Canadian Cancer Society to RL. PG is a recipient of a fellowship award from the Lymphoma Foundation of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Lai.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelebart, P., Zak, Z., Anand, M. et al. Interleukin-21 effectively induces apoptosis in mantle cell lymphoma through a STAT1-dependent mechanism. Leukemia 23, 1836–1846 (2009). https://doi.org/10.1038/leu.2009.100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.100

Keywords

This article is cited by

Search

Quick links