Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

Nilotinib concentration in cell lines and primary CD34+ chronic myeloid leukemia cells is not mediated by active uptake or efflux by major drug transporters

Abstract

Imatinib mesylate and nilotinib are highly effective at eradicating the majority of chronic myeloid leukemia (CML) cells; however, neither agent induces apoptosis of primitive CML CD34+ cells. One possible explanation is that CD34+ cells do not accumulate sufficient intracellular drug levels because of either inadequate active uptake or increased efflux. To determine the interaction of nilotinib with major clinically implicated drug transporters, we analyzed their interactions with MDR1 (ABCB1), MRP1 (ABCC1), ABCG2 (BCRP) and human organic cation transporter (hOCT)1 in CML cell lines and primitive (CD34+) primary CML cells. Nilotinib is neither dependent on active import by hOCT1, nor effluxed through the ATP-binding cassette transporters analyzed. Indeed, we found nilotinib to be an inhibitor of hOCT1, MDR1 and ABCG2. The efflux transporters MDR1, MRP1 and ABCG2 are expressed on CML CD34+ cells at 13.5, 108 and 291% of control, respectively, although hOCT1 expression was absent; however, inhibition of efflux transporter activity did not potentiate the effect of nilotinib on apoptosis, Bcr–Abl inhibition or CML CD34+ cell proliferation. Therefore, we have found no evidence for either active uptake of nilotinib through hOCT1 or efflux through MDR1, MRP1 or ABCG2, and it is therefore unlikely that these transporters will have any effect on the clinical response to this drug.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  2. Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006; 355: 2408–2417.

    Article  CAS  PubMed  Google Scholar 

  3. Kantarjian HM, Giles F, Gattermann N, Bhalla K, Alimena G, Palandri F et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood 2007; 110: 3540–3546.

    Article  CAS  PubMed  Google Scholar 

  4. Ottmann O, Dombret H, Martinelli G, Simonsson B, Guilhot F, Larson RA et al. Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib: interim results of a phase 2 study. Blood 2007; 110: 2309–2315.

    Article  CAS  PubMed  Google Scholar 

  5. Jorgensen HG, Allan EK, Jordanides NE, Mountford JC, Holyoake TL . Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood 2007; 109: 4016–4019.

    Article  CAS  PubMed  Google Scholar 

  6. Elrick LJ, Jorgensen HG, Mountford JC, Holyoake TL . Punish the parent not the progeny. Blood 2005; 105: 1862–1866.

    Article  CAS  PubMed  Google Scholar 

  7. Bhatia R, Holtz M, Niu N, Gray R, Snyder DS, Sawyers CL et al. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 2003; 101: 4701–4707.

    Article  CAS  PubMed  Google Scholar 

  8. Jordanides NE, Jorgensen HG, Holyoake TL, Mountford JC . Functional ABCG2 is overexpressed on primary CML CD34+ cells and is inhibited by imatinib mesylate. Blood 2006; 108: 1370–1373.

    Article  CAS  PubMed  Google Scholar 

  9. Burger H, van Tol H, Boersma AW, Brok M, Wiemer EA, Stoter G et al. Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 2004; 104: 2940–2942.

    Article  CAS  PubMed  Google Scholar 

  10. Houghton PJ, Germain GS, Harwood FC, Schuetz JD, Stewart CF, Buchdunger E et al. Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res 2004; 64: 2333–2337.

    Article  CAS  PubMed  Google Scholar 

  11. Nakanishi T, Shiozawa K, Hassel BA, Ross DD . Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells: BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression. Blood 2006; 108: 678–684.

    Article  CAS  PubMed  Google Scholar 

  12. Burger H, van Tol H, Brok M, Wiemer EA, de Bruijn EA, Guetens G et al. Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps. Cancer Biol Ther 2005; 4: 747–752.

    Article  CAS  PubMed  Google Scholar 

  13. Hamada A, Miyano H, Watanabe H, Saito H . Interaction of imatinib mesilate with human P-glycoprotein. J Pharmacol Exp Ther 2003; 307: 824–828.

    Article  CAS  PubMed  Google Scholar 

  14. Illmer T, Schaich M, Platzbecker U, Freiberg-Richter J, Oelschlagel U, von Bonin M et al. P-glycoprotein-mediated drug efflux is a resistance mechanism of chronic myelogenous leukemia cells to treatment with imatinib mesylate. Leukemia 2004; 18: 401–408.

    Article  CAS  PubMed  Google Scholar 

  15. Hatziieremia S, Jordanides NE, Holyoake TL, Mountford JC, Jorgensen HG . Inhibition of MDR1 does not sensitise primitive chronic myeloid leukaemia CD34+ cell to imatinib. Exp Hematol 2009; 37: 692–700.

    Article  CAS  PubMed  Google Scholar 

  16. Thomas J, Wang L, Clark RE, Pirmohamed M . Active transport of imatinib into and out of cells: implications for drug resistance. Blood 2004; 104: 3739–3745.

    Article  CAS  PubMed  Google Scholar 

  17. Wang L, Giannoudis A, Lane S, Williamson P, Pirmohamed M, Clark RE . Expression of the uptake drug transporter hOCT1 is an important clinical determinant of the response to imatinib in chronic myeloid leukemia. Clin Pharmacol Ther 2008; 83: 258–264.

    Article  CAS  PubMed  Google Scholar 

  18. Brendel C, Scharenberg C, Dohse M, Robey RW, Bates SE, Shukla S . et al. Imatinib mesylate and nilotinib (AMN107) exhibit high-affinity interaction with ABCG2 on primitive hematopoietic stem cells. Leukemia 2007; 21: 1267–1275.

    Article  CAS  PubMed  Google Scholar 

  19. White DL, Saunders VA, Dang P, Engler J, Zannettino AC, Cambareri AC et al. OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood 2006; 108: 697–704.

    Article  CAS  PubMed  Google Scholar 

  20. Wang DS, Jonker JW, Kato Y, Kusuhara H, Schinkel AH, Sugiyama Y . Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther 2002; 302: 510–515.

    Article  CAS  PubMed  Google Scholar 

  21. Southgate TD, Garside E, Margison GP, Fairbairn LJ . Dual agent chemoprotection by retroviral co-expression of either MDR1 or MRP1 with the P140K mutant of O6-methylguanine-DNA-methyl transferase. J Gene Med 2006; 8: 972–979.

    Article  CAS  PubMed  Google Scholar 

  22. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002; 99: 319–325.

    Article  CAS  PubMed  Google Scholar 

  23. Hamilton A, Elrick L, Myssina S, Copland M, Jorgensen H, Melo JV et al. BCR-ABL activity and its response to drugs can be determined in CD34+ CML stem cells by CrkL phosphorylation status using flow cytometry. Leukemia 2006; 20: 1035–1039.

    Article  CAS  PubMed  Google Scholar 

  24. Robey RW, Honjo Y, van de Laar A, Miyake K, Regis JT, Litman T et al. A functional assay for detection of the mitoxantrone resistance protein, MXR (ABCG2). Biochim Biophys Acta 2001; 1512: 171–182.

    Article  CAS  PubMed  Google Scholar 

  25. Dai H, Marbach P, Lemaire M, Hayes M, Elmquist WF . Distribution of STI-571 to the brain is limited by P-glycoprotein-mediated efflux. J Pharmacol Exp Ther 2003; 304: 1085–1092.

    Article  CAS  PubMed  Google Scholar 

  26. Yunger LM, Cramer III RD . Measurement of correlation of partition coefficients of polar amino acids. Mol Pharmacol 1981; 20: 602–608.

    CAS  PubMed  Google Scholar 

  27. Davies A, Hayes A, Giannoudis A, Lucas C, Knight K, Watmough S et al. A study of plasma levels of imatinib and its bioactive metabolite CGP-74588 reveals no correlation with subsequent clinical outcome in imatinib-treated chronic myeloid leukaemia. Haematologica 2009; 94 (s2): 259 (abstract 0637).

  28. White DL, Saunders VA, Quinn SR, Manley PW, Hughes TP . Imatinib increases the intracellular concentration of nilotinib, which may explain the observed synergy between these drugs. Blood 2007; 109: 3609–3610.

    Article  CAS  PubMed  Google Scholar 

  29. Mahon FX, Belloc F, Lagarde V, Chollet C, Moreau-Gaudry F, Reiffers J et al. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 2003; 101: 2368–2373.

    Article  CAS  PubMed  Google Scholar 

  30. Kock K, Grube M, Jedlitschky G, Oevermann L, Siegmund W, Ritter CA et al. Expression of adenosine triphosphate-binding cassette (ABC) drug transporters in peripheral blood cells: relevance for physiology and pharmacotherapy. Clin Pharmacokinet 2007; 46: 449–470.

    Article  PubMed  Google Scholar 

  31. Norgaard JM, Olesen LH, Hokland P . Changing picture of cellular drug resistance in human leukemia. Crit Rev Oncol Hematol 2004; 50: 39–49.

    Article  PubMed  Google Scholar 

  32. Galimberti S, Cervetti G, Guerrini F, Testi R, Pacini S, Fazzi R et al. Quantitative molecular monitoring of BCR-ABL and MDR1 transcripts in patients with chronic myeloid leukemia during imatinib treatment. Cancer Genet Cytogenet 2005; 162: 57–62.

    Article  CAS  PubMed  Google Scholar 

  33. Mahon F-X, Hayette S, Lagarde V, Belloc F, Turcq B, Nicolini F et al. Evidence that resistance to nilotinib may be due to BCR-ABL, Pgp, or Src kinase overexpression. Cancer Res 2008; 68: 9809–9816.

    Article  CAS  PubMed  Google Scholar 

  34. Baer MR, George SL, Dodge RK, O'Loughlin KL, Minderman H, Caligiuri MA et al. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: cancer and Leukemia Group B Study 9720. Blood 2002; 100: 1224–1232.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Novartis Pharma for the supply of imatinib, nilotinib, radio-labelled nilotinib and PSC833. This work was supported by Leukaemia Research Great Britain (Grant #04034). AD, NEJ, AG, CML, SH and RJH conducted the experiments; AD, NEJ, AG, JCM and HGJ analyzed the results, compiled the figures and edited the manuscript; JCM, REC, TLH and MP designed and supervised the research; all authors contributed to the critical review of the data and preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J C Mountford.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davies, A., Jordanides, N., Giannoudis, A. et al. Nilotinib concentration in cell lines and primary CD34+ chronic myeloid leukemia cells is not mediated by active uptake or efflux by major drug transporters. Leukemia 23, 1999–2006 (2009). https://doi.org/10.1038/leu.2009.166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.166

Keywords

This article is cited by

Search

Quick links