Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Therapy

Activation of p53 by MDM2 antagonists has differential apoptotic effects on Epstein–Barr virus (EBV)-positive and EBV-negative Burkitt's lymphoma cells

Abstract

p53 inactivation is often observed in Burkitt's lymphoma (BL) cells, because of either mutations in p53 gene or an overexpression of the p53-negative regulator MDM2. Epstein–Barr virus (EBV) is present in virtually 100% of BL cases occurring in endemic areas, but in only 10–20% of sporadic cases. In EBV(−) BL cells, reactivation of p53, induced by reducing MDM2 protein level, led to apoptosis. We show here that nutlin-3, a potent antagonist of MDM2, activates the p53 pathway in all BL cell lines harboring wild-type p53, regardless of EBV status. However, nutlin-3 strongly induced apoptosis in EBV(−) or latency I EBV(+) cells, whereas latency III EBV(+) cells were much more resistant. Prior treatment with sublethal doses of nutlin-3 sensitizes EBV(−) or latency I EBV(+) cells to apoptosis induced by etoposide or melphalan, but protects latency III EBV(+) cells. p21WAF1 which is overexpressed in the latter, is involved in this protective effect, as siRNA-mediated inhibition of p21WAF1 restores sensitivity to etoposide. Nutlin-3 protects latency III BL cells by inducing a p21WAF1-mediated G1 arrest. Most BL patients with wild-type p53 tumors could therefore benefit from treatment with nutlin-3, after a careful determination of the latency pattern of EBV in infected patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Harris SL, Levine AJ . The p53 pathway: positive and negative feedback loops. Oncogene 2005; 24: 2899–2908.

    Article  CAS  PubMed  Google Scholar 

  2. Vogelstein B, Lane D, Levine AJ . Surfing the p53 network. Nature 2000; 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  3. Vousden KH, Lu X . Live or let die: the cell′s response to p53. Nat Rev Cancer 2002; 2: 594–604.

    Article  CAS  PubMed  Google Scholar 

  4. Iwakuma T, Lozano G . MDM2, an introduction. Mol Cancer Res 2003; 1: 993–1000.

    CAS  PubMed  Google Scholar 

  5. Bond GL, Hu W, Levine AJ . MDM2 is a central node in the p53 pathway: 12 years and counting. Curr Cancer Drug Targets 2005; 5: 3–8.

    Article  CAS  PubMed  Google Scholar 

  6. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B . Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 1992; 358: 80–83.

    Article  CAS  PubMed  Google Scholar 

  7. Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC et al. A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 2004; 119: 591–602.

    Article  CAS  PubMed  Google Scholar 

  8. Capoulade C, Bressac-de Paillerets B, Lefrere I, Ronsin M, Feunteun J, Tursz T et al. Overexpression of MDM2, due to enhanced translation, results in inactivation of wild-type p53 in Burkitt′s lymphoma cells. Oncogene 1998; 16: 1603–1610.

    Article  CAS  PubMed  Google Scholar 

  9. Landers JE, Cassel SL, George DL . Translational enhancement of MDM2 oncogene expression in human tumor cells containing a stabilized wild-type p53 protein. Cancer Res 1997; 57: 3562–3568.

    CAS  PubMed  Google Scholar 

  10. Zhang R, Wang H . MDM2 oncogene as a novel target for human cancer therapy. Curr Pharm Des 2000; 6: 393–416.

    Article  CAS  PubMed  Google Scholar 

  11. Yang Y, Ludwig RL, Jensen JP, Pierre SA, Medaglia MV, Davydov IV et al. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 2005; 7: 547–559.

    Article  CAS  PubMed  Google Scholar 

  12. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 2004; 303: 844–848.

    Article  CAS  PubMed  Google Scholar 

  13. Sarek G, Kurki S, Enback J, Iotzova G, Haas J, Laakkonen P et al. Reactivation of the p53 pathway as a treatment modality for KSHV-induced lymphomas. J Clin Invest 2007; 117: 1019–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stuhmer T, Chatterjee M, Hildebrandt M, Herrmann P, Gollasch H, Gerecke C et al. Non-genotoxic activation of the p53 pathway as a therapeutic strategy for multiple myeloma. Blood 2005; 106: 3609–3617.

    Article  PubMed  Google Scholar 

  15. Ambrosini G, Sambol EB, Carvajal D, Vassilev LT, Singer S, Schwartz GK . Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1. Oncogene 2007; 26: 3473–3481.

    Article  CAS  PubMed  Google Scholar 

  16. Barbieri E, Mehta P, Chen Z, Zhang L, Slack A, Berg S et al. MDM2 inhibition sensitizes neuroblastoma to chemotherapy-induced apoptotic cell death. Mol Cancer Ther 2006; 5: 2358–2365.

    Article  CAS  PubMed  Google Scholar 

  17. Cao C, Shinohara ET, Subhawong TK, Geng L, Woon Kim K, Albert JM et al. Radiosensitization of lung cancer by Nutlin, an inhibitor of murine double minute 2. Mol Cancer Ther 2006; 5: 411–417.

    Article  CAS  PubMed  Google Scholar 

  18. Coll-Mulet L, Iglesias-Serret D, Santidrian AF, Cosialls AM, de Frias M, Castano E et al. MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells. Blood 2006; 107: 4109–4114.

    Article  CAS  PubMed  Google Scholar 

  19. Drakos E, Thomaides A, Medeiros LJ, Li J, Leventaki V, Konopleva M et al. Inhibition of p53-murine double minute 2 interaction by Nutlin-3A stabilizes p53 and induces cell cycle arrest and apoptosis in Hodgkin lymphoma. Clin Cancer Res 2007; 13: 3380–3387.

    Article  CAS  PubMed  Google Scholar 

  20. Secchiero P, Barbarotto E, Tiribelli M, Zerbinati C, di Iasio MG, Gonelli A et al. Functional integrity of the p53-mediated apoptotic pathway induced by the nongenotoxic agent nutlin-3 in B-cell chronic lymphocytic leukemia (B-CLL). Blood 2006; 107: 4122–4129.

    Article  CAS  PubMed  Google Scholar 

  21. Gaidano G, Ballerini P, Gong JZ, Inghirami G, Neri A, Newcomb EW et al. p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci USA 1991; 88: 5413–5417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wilda M, Bruch J, Harder L, Rawer D, Reiter A, Borkhardt A et al. Inactivation of the ARF-MDM-2-p53 pathway in sporadic Burkitt′s lymphoma in children. Leukemia 2004; 18: 584–588.

    Article  CAS  PubMed  Google Scholar 

  23. Lindstrom MS, Klangby U, Wiman KG . p14 ARF homozygous deletion or MDM2 overexpression in Burkitt lymphoma lines carrying wild type p53. Oncogene 2001; 20: 2171–2177.

    Article  CAS  PubMed  Google Scholar 

  24. Lindstrom MS, Wiman KG . Role of genetic and epigenetic changes in Burkitt lymphoma. Semin Cancer Biol 2002; 12: 381–387.

    Article  CAS  PubMed  Google Scholar 

  25. Imamura J, Miyoshi I, Koeffler HP . p53 in hematologic malignancies. Blood 1994; 84: 2412–2421.

    CAS  PubMed  Google Scholar 

  26. Capoulade C, Mir LM, Carlier K, Lecluse Y, Tetaud C, Mishal Z et al. Apoptosis of tumoral and nontumoral lymphoid cells is induced by both MDM2 and p53 antisense oligodeoxynucleotides. Blood 2001; 97: 1043–1049.

    Article  CAS  PubMed  Google Scholar 

  27. Thompson MP, Kurzrock R . Epstein-Barr virus and cancer. Clin Cancer Res 2004; 10: 803–821.

    Article  CAS  PubMed  Google Scholar 

  28. Rowe M, Rowe DT, Gregory CD, Young LS, Farrel PJ, Rupani H et al. Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt′s lymphoma cells. EMBO J 1987; 6: 2743–2751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kelly GL, Milner AE, Baldwin GS, Bell AI, Rickinson AB . Three restricted forms of Epstein-Barr virus latency counteracting apoptosis in c-myc-expressing Burkitt lymphoma cells. Proc Natl Acad Sci USA 2006; 103: 14935–14940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O'Nions J, Allday MJ . Epstein-Barr virus can inhibit genotoxin-induced G1 arrest downstream of p53 by preventing the inactivation of CDK2. Oncogene 2003; 22: 7181–7191.

    Article  CAS  PubMed  Google Scholar 

  31. Wade M, Allday MJ . Epstein-Barr virus suppresses a G(2)/M checkpoint activated by genotoxins. Mol Cell Biol 2000; 20: 1344–1360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Okan I, Wang Y, Chen F, Hu LF, Imreh S, Klein G et al. The EBV-encoded LMP1 protein inhibits p53-triggered apoptosis but not growth arrest. Oncogene 1995; 11: 1027–1031.

    CAS  PubMed  Google Scholar 

  33. Lenoir GM, Preud′homme JL, Bernheim A, Berger R . Correlation between immunoglobulin light chain expression and variant translocation in Burkitt′s lymphoma. Nature 1982; 298: 474–476.

    Article  CAS  PubMed  Google Scholar 

  34. Yu J, Zhang L, Hwang PM, Rago C, Kinzler KW, Vogelstein B . Identification and classification of p53-regulated genes. Proc Natl Acad Sci USA 1999; 96: 14517–14522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gartel AL, Tyner AL . The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Mol Cancer Ther 2002; 1: 639–649.

    CAS  PubMed  Google Scholar 

  36. Maddika S, Ande SR, Panigrahi S, Paranjothy T, Weglarczyk K, Zuse A et al. Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy. Drug Resist Updat 2007; 10: 13–29.

    Article  CAS  PubMed  Google Scholar 

  37. Vassilev LT . MDM2 inhibitors for cancer therapy. Trends Mol Med 2007; 13: 23–31.

    Article  CAS  PubMed  Google Scholar 

  38. Petre CE, Sin SH, Dittmer DP . Functional p53 signaling in Kaposi′s sarcoma-associated herpesvirus lymphomas: implications for therapy. J Virol 2007; 81: 1912–1922.

    Article  CAS  PubMed  Google Scholar 

  39. Lau LM, Nugent JK, Zhao X, Irwin MS . HDM2 antagonist Nutlin-3 disrupts p73-HDM2 binding and enhances p73 function. Oncogene 2008; 27: 997–1003.

    Article  CAS  PubMed  Google Scholar 

  40. Tabe Y, Sebasigari D, Jin L, Rudelius M, Davies-Hill T, Miyake K et al. MDM2 antagonist Nutlin-3 displays antiproliferative and proapoptotic activity in mantle cell lymphoma. Clin Cancer Res 2009; 15: 933–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ablashi DV, Chatlynne LG, Whitman Jr JE, Cesarman E . Spectrum of Kaposi′s sarcoma-associated herpesvirus, or human herpesvirus 8 diseases. Clin Microbiol Rev 2002; 15: 439–464.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jiang M, Pabla N, Murphy RF, Yang T, Yin XM, Degenhardt K et al. Nutlin-3 protects kidney cells during cisplatin therapy by suppressing Bax/Bak activation. J Biol Chem 2007; 282: 2636–2645.

    Article  CAS  PubMed  Google Scholar 

  43. Carvajal D, Tovar C, Yang H, Vu BT, Heimbrook DC, Vassilev LT . Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors. Cancer Res 2005; 65: 1918–1924.

    Article  CAS  PubMed  Google Scholar 

  44. Kranz D, Dobbelstein M . Nongenotoxic p53 activation protects cells against S-phase-specific chemotherapy. Cancer Res 2006; 66: 10274–10280.

    Article  CAS  PubMed  Google Scholar 

  45. Prabhu NS, Somasundaram K, Tian H, Enders GH, Satyamoorthy K, Herlyn M et al. The administration schedule of cyclin-dependent kinase inhibitor gene therapy and etoposide chemotherapy is a major determinant of cytotoxicity. Int J Oncol 1999; 15: 209–216.

    CAS  PubMed  Google Scholar 

  46. Chan TA, Hwang PM, Hermeking H, Kinzler KW, Vogelstein B . Cooperative effects of genes controlling the G2/M checkpoint. Genes Dev 2000; 14: 1584–1588.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu Y, Tatsuka M, Takebe H, Yagi T . Involvement of cyclin-dependent kinases in doxorubicin-induced apoptosis in human tumor cells. Mol Carcinog 2000; 29: 1–7.

    Article  PubMed  Google Scholar 

  48. Lin CS, Kuo HH, Chen JY, Yang CS, Wang WB . Epstein-Barr virus nuclear antigen 2 retards cell growth, induces p21(WAF1) expression, and modulates p53 activity post-translationally. J Mol Biol 2000; 303: 7–23.

    Article  CAS  PubMed  Google Scholar 

  49. Allday MJ, Inman GJ, Crawford DH, Farrell PJ . DNA damage in human B cells can induce apoptosis, proceeding from G1/S when p53 is transactivation competent and G2/M when it is transactivation defective. EMBO J 1995; 14: 4994–5005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. O'Nions J, Turner A, Craig R, Allday MJ . Epstein-Barr virus selectively deregulates DNA damage responses in normal B cells but has no detectable effect on regulation of the tumor suppressor p53. J Virol 2006; 80: 12408–12413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Fondation de France 2002004543 (JW); Association pour la recherche sur le Cancer 3454 (JW and EH); Société Française du cancer and Société Française d'Hématologie (BR). We thank Yann Lécluse for expert technical assistance in performing flow cytometry analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Wiels.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renouf, B., Hollville, É., Pujals, A. et al. Activation of p53 by MDM2 antagonists has differential apoptotic effects on Epstein–Barr virus (EBV)-positive and EBV-negative Burkitt's lymphoma cells. Leukemia 23, 1557–1563 (2009). https://doi.org/10.1038/leu.2009.92

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.92

Keywords

This article is cited by

Search

Quick links