Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

You eat what you are: autophagy inhibition as a therapeutic strategy in leukemia

Abstract

A deeper understanding of the role of autophagy, literally ‘self-eating’, in normal and cancer cell biology has emerged over the last few years. Autophagy serves as a vehicle for cells to respond to various stressors including genomic, hypoxic and nutrient stress, and to oppose mechanisms of ‘programmed’ cell death. Here, we review not only mechanisms of cell death and cell survival but also the early successes in applying autophagy inhibition strategies in solid tumors using the only currently available clinical inhibitor, oral hydroxychloroquine. In acute leukemia, currently available chemotherapy drugs promote cell death and demonstrate clinical benefit, but relapse and subsequent chemotherapy resistance is common. Increasing preclinical data suggest that autophagy is active in leukemia as a means of promoting cell survival in response to chemotherapy. We propose coupling autophagy inhibition strategies with current cytotoxic chemotherapy and discuss synergistic combinations of available anti-leukemic therapies with autophagy inhibition. Furthermore, novel autophagy inhibitors are in development and promise to provide new therapeutic opportunities for patients with leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A . Cancer statistics, 2014. CA Cancer J Clin 2014; 64: 9–29.

    PubMed  Google Scholar 

  2. Burnett AK, Goldstone A, Hills RK, Milligan D, Prentice A, Yin J et al. Curability of patients with acute myeloid leukemia who did not undergo transplantation in first remission. J Clin Oncol 2013; 31: 1293–1301.

    PubMed  Google Scholar 

  3. Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115: 453–474.

    Article  PubMed  Google Scholar 

  4. Steinbach D, Legrand O . ABC transporters and drug resistance in leukemia: was P-gp nothing but the first head of the Hydra? Leukemia 2007; 21: 1172–1176.

    CAS  PubMed  Google Scholar 

  5. Leith CP, Kopecky KJ, Chen IM, Eijdems L, Slovak ML, McConnell TS et al. Frequency and clinical significance of the expression of the multidrug resistance proteins MDR1/P-glycoprotein, MRP1, and LRP in acute myeloid leukemia: a Southwest Oncology Group Study. Blood 1999; 94: 1086–1099.

    CAS  PubMed  Google Scholar 

  6. Misaghian N, Ligresti G, Steelman LS, Bertrand FE, Basecke J, Libra M et al. Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia 2009; 23: 25–42.

    CAS  PubMed  Google Scholar 

  7. Tasdemir E, Maiuri MC, Tajeddine N, Vitale I, Criollo A, Vicencio JM et al. Cell cycle-dependent induction of autophagy, mitophagy and reticulophagy. Cell Cycle 2007; 6: 2263–2267.

    CAS  PubMed  Google Scholar 

  8. Tasdemir E, Maiuri MC, Orhon I, Kepp O, Morselli E, Criollo A et al. p53 represses autophagy in a cell cycle-dependent fashion. Cell Cycle 2008; 7: 3006–3011.

    CAS  PubMed  Google Scholar 

  9. Amaravadi RK, Lippincott-Schwartz J, Yin XM, Weiss WA, Takebe N, Timmer W et al. Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 2011; 17: 654–666.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Livesey KM, Kang R, Vernon P, Buchser W, Loughran P, Watkins SC et al. p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res 2012; 72: 1996–2005.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Galluzzi L, Kepp O, Kroemer G . TP53 and MTOR crosstalk to regulate cellular senescence. Aging 2010; 2: 535–537.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Morselli E, Shen S, Ruckenstuhl C, Bauer MA, Marino G, Galluzzi L et al. p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. Cell Cycle 2011; 10: 2763–2769.

    CAS  PubMed  Google Scholar 

  13. Kang R, Loux T, Tang D, Schapiro NE, Vernon P, Livesey KM et al. The expression of the receptor for advanced glycation endproducts (RAGE) is permissive for early pancreatic neoplasia. Proc Natl Acad Sci USA 2012; 109: 7031–7036.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Green DR, Levine B . To be or not to be? How selective autophagy and cell death govern cell fate. Cell 2014; 157: 65–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402: 672–676.

    Article  CAS  PubMed  Google Scholar 

  16. Liang XH, Yu J, Brown K, Levine B . Beclin 1 contains a leucine-rich nuclear export signal that is required for its autophagy and tumor suppressor function. Cancer Res 2001; 61: 3443–3449.

    CAS  PubMed  Google Scholar 

  17. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005; 122: 927–939.

    CAS  PubMed  Google Scholar 

  18. Wang ZH, Xu L, Duan ZL, Zeng LQ, Yan NH, Peng ZL . Beclin 1-mediated macroautophagy involves regulation of caspase-9 expression in cervical cancer HeLa cells. Gynecol Oncol 2007; 107: 107–113.

    CAS  PubMed  Google Scholar 

  19. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112: 1809–1820.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ahn CH, Jeong EG, Lee JW, Kim MS, Kim SH, Kim SS et al. Expression of beclin-1, an autophagy-related protein, in gastric and colorectal cancers. APMIS 2007; 115: 1344–1349.

    PubMed  Google Scholar 

  21. Yang Z, Klionsky DJ . Eaten alive: a history of macroautophagy. Nat Cell Biol 2010; 12: 814–822.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mizushima N, Levine B, Cuervo AM, Klionsky DJ . Autophagy fights disease through cellular self-digestion. Nature 2008; 451: 1069–1075.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Choi AM, Ryter SW, Levine B . Autophagy in human health and disease. N Engl J Med 2013; 368: 1845–1846.

    CAS  PubMed  Google Scholar 

  24. Yang Z, Klionsky DJ . Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 2010; 22: 124–131.

    CAS  PubMed  Google Scholar 

  25. Ge L, Schekman R . The ER-Golgi intermediate compartment feeds the phagophore membrane. Autophagy 2014; 10: 170–172.

    CAS  PubMed  Google Scholar 

  26. Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X . ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 2009; 284: 12297–12305.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Molecular biology of the cell 2009; 20: 1992–2003.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. O'Farrell F, Rusten TE, Stenmark H . Phosphoinositide 3-kinases as accelerators and brakes of autophagy. The FEBS journal 2013; 280: 6322–6337.

    CAS  Google Scholar 

  29. Alers S, Loffler AS, Wesselborg S, Stork B . Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Molecular and cellular biology 2012; 32: 2–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. He C, Levine B . The Beclin 1 interactome. Current opinion in cell biology 2010; 22: 140–149.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Itakura E, Kishi C, Inoue K, Mizushima N . Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Molecular biology of the cell 2008; 19: 5360–5372.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 2006; 8: 688–699.

    CAS  PubMed  Google Scholar 

  33. Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 2009; 11: 385–396.

    CAS  PubMed  Google Scholar 

  34. Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P et al. Endogenous HMGB1 regulates autophagy. J Cell Biol 2010; 190: 881–892.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tang D, Kang R, Cheh CW, Livesey KM, Liang X, Schapiro NE et al. HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 2010; 29: 5299–5310.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000; 19: 5720–5728.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mizushima N, Yoshimori T, Levine B . Methods in mammalian autophagy research. Cell 2010; 140: 313–326.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 2007; 117: 326–336.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T et al. Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 2008; 283: 22847–22857.

    CAS  PubMed  Google Scholar 

  40. Reggiori F, Komatsu M, Finley K, Simonsen A . Autophagy: more than a nonselective pathway. Int J Cell Biol 2012; 2012: 219625.

    PubMed  PubMed Central  Google Scholar 

  41. Janku F, McConkey DJ, Hong DS, Kurzrock R . Autophagy as a target for anticancer therapy. Nat Rev Clin Oncol 2011; 8: 528–539.

    CAS  PubMed  Google Scholar 

  42. Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev 2011; 25: 795–800.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 2007; 9: 1142–1151.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer cell 2006; 10: 51–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rabinowitz JD, White E . Autophagy and metabolism. Science 2010; 330: 1344–1348.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pavlides S, Tsirigos A, Migneco G, Whitaker-Menezes D, Chiavarina B, Flomenberg N et al. The autophagic tumor stroma model of cancer: Role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell cycle 2010; 9: 3485–3505.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009; 137: 1062–1075.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rao S, Tortola L, Perlot T, Wirnsberger G, Novatchkova M, Nitsch R et al. A dual role for autophagy in a murine model of lung cancer. Nature communications 2014; 5: 3056.

    PubMed  Google Scholar 

  49. Rosenfeldt MT, O'Prey J, Morton JP, Nixon C, MacKay G, Mrowinska A et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature 2013; 504: 296–300.

    CAS  PubMed  Google Scholar 

  50. Mortensen M, Watson AS, Simon AK . Lack of autophagy in the hematopoietic system leads to loss of hematopoietic stem cell function and dysregulated myeloid proliferation. Autophagy 2011; 7: 1069–1070.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Watson AS, Mortensen M, Simon AK . Autophagy in the pathogenesis of myelodysplastic syndrome and acute myeloid leukemia. Cell cycle 2011; 10: 1719–1725.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chittaranjan S, Bortnik S, Dragowska WH, Xu J, Abeysundara N, Leung A et al. Autophagy inhibition augments the anticancer effects of epirubicin treatment in anthracycline-sensitive and -resistant triple-negative breast cancer. Clin Cancer Res 2014; 20: 3159–3173.

    CAS  PubMed  Google Scholar 

  53. Selvakumaran M, Amaravadi RK, Vasilevskaya IA, O'Dwyer PJ . Autophagy inhibition sensitizes colon cancer cells to antiangiogenic and cytotoxic therapy. Clin Cancer Res 2013; 19: 2995–3007.

    CAS  PubMed  Google Scholar 

  54. Ma XH, Piao SF, Dey S, McAfee Q, Karakousis G, Villanueva J et al. Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. J Clin Invest 2014; 124: 1406–1417.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Palmeira dos Santos C, Pereira GJ, Barbosa CM, Jurkiewicz A, Smaili SS, Bincoletto C . Comparative study of autophagy inhibition by 3MA and CQ on Cytarabineinduced death of leukaemia cells. J Cancer Res Clin Oncol 2014; 140: 909–920.

    PubMed  Google Scholar 

  56. Wang J, Wu GS . Role of autophagy in Cisplatin resistance in ovarian cancer cells. J Biol Chem 2014; 289: 17163–17173.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang M, Zeng P, Kang R, Yu Y, Yang L, Tang D et al. S100A8 contributes to drug resistance by promoting autophagy in leukemia cells. PLoS ONE 2014; 9: e97242.

    PubMed  PubMed Central  Google Scholar 

  58. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011; 334: 1573–1577.

    CAS  PubMed  Google Scholar 

  59. Liang X, De Vera ME, Buchser WJ, Romo de Vivar Chavez A, Loughran P, Beer Stolz D et al. Inhibiting systemic autophagy during interleukin 2 immunotherapy promotes long-term tumor regression. Cancer Res 2012; 72: 2791–2801.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lotze MT, Buchser WJ, Liang X . Blocking the interleukin 2 (IL2)-induced systemic autophagic syndrome promotes profound antitumor effects and limits toxicity. Autophagy 2012; 8: 1264–1266.

    PubMed  Google Scholar 

  61. Marceau F, Bawolak MT, Bouthillier J, Morissette G . Vacuolar ATPase-mediated cellular concentration and retention of quinacrine: a model for the distribution of lipophilic cationic drugs to autophagic vacuoles. Drug Metab Dispos 2009; 37: 2271–2274.

    CAS  PubMed  Google Scholar 

  62. Munster T, Gibbs JP, Shen D, Baethge BA, Botstein GR, Caldwell J et al. Hydroxychloroquine concentration-response relationships in patients with rheumatoid arthritis. Arthritis Rheum 2002; 46: 1460–1469.

    CAS  PubMed  Google Scholar 

  63. Sotelo J, Briceno E, Lopez-Gonzalez MA . Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 2006; 144: 337–343.

    CAS  PubMed  Google Scholar 

  64. Goldberg SB, Supko JG, Neal JW, Muzikansky A, Digumarthy S, Fidias P et al. A phase I study of erlotinib and hydroxychloroquine in advanced non-small-cell lung cancer. J Thorac Oncol 2012; 7: 1602–1608.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lotze MT BB, Zureikat AH, Bahary N, Lehman D, Liotta LA, Zeh HJ . Phase I/II trial of autophagy inhibition in combination with neoadjuvant gemcitabine in patients with high-risk pancreatic adenocarcinoma: safety, clinical response, and correlative studies. J Clin Oncol 2014; 32: 218.

    Google Scholar 

  66. Rangwala R, Chang YC, Hu J, Algazy K, Evans T, Fecher L et al. Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy 2014; 10: 1391–1402.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rangwala R, Leone R, Chang YC, Fecher L, Schuchter L, Kramer A et al. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy 2014; 10: 1369–1379.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Vogl DT, Stadtmauer EA, Tan KS, Heitjan DF, Davis LE, Pontiggia L et al. Combined autophagy and proteasome inhibition: A phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy 2014; 10: 1380–1390.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rosenfeld MR, Ye X, Supko JG, Desideri S, Grossman SA, Brem S et al. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 2014; 10: 1359–1368.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mahalingam D, Mita M, Sarantopoulos J, Wood L, Amaravadi R, Davis LE et al. Combined autophagy and HDAC inhibition: A phase I safety, tolerability, pharmacokinetic, and pharmacodynamic analysis of hydroxychloroquine in combination with the HDAC inhibitor vorinostat in patients with advanced solid tumors. Autophagy 2014; 10: 1403–1414.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Han W, Sun J, Feng L, Wang K, Li D, Pan Q et al. Autophagy inhibition enhances daunorubicin-induced apoptosis in K562 cells. PLoS ONE 2011; 6: e28491.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bosnjak M, Ristic B, Arsikin K, Mircic A, Suzin-Zivkovic V, Perovic V et al. Inhibition of mTOR-dependent autophagy sensitizes leukemic cells to cytarabine-induced apoptotic death. PLoS ONE 2014; 9: e94374.

    PubMed  PubMed Central  Google Scholar 

  73. Altman JK, Sassano A, Platanias LC . Targeting mTOR for the treatment of AML. New agents and new directions. Oncotarget 2011; 2: 510–517.

    PubMed  PubMed Central  Google Scholar 

  74. Chen W, Drakos E, Grammatikakis I, Schlette EJ, Li J, Leventaki V et al. mTOR signaling is activated by FLT3 kinase and promotes survival of FLT3-mutated acute myeloid leukemia cells. Mol Cancer 2010; 9: 292.

    PubMed  PubMed Central  Google Scholar 

  75. Min YH, Eom JI, Cheong JW, Maeng HO, Kim JY, Jeung HK et al. Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leukemia 2003; 17: 995–997.

    CAS  PubMed  Google Scholar 

  76. Benjamin D, Colombi M, Moroni C, Hall MN . Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 2011; 10: 868–880.

    CAS  PubMed  Google Scholar 

  77. Altman JK, Szilard A, Goussetis DJ, Sassano A, Colamonici M, Gounaris E et al. Autophagy is a survival mechanism of acute myelogenous leukemia precursors during dual mTORC2/mTORC1 targeting. Clin Cancer Res 2014; 20: 2400–2409.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Willems L, Chapuis N, Puissant A, Maciel TT, Green AS, Jacque N et al. The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia. Leukemia 2012; 26: 1195–1202.

    CAS  PubMed  Google Scholar 

  79. Carayol N, Vakana E, Sassano A, Kaur S, Goussetis DJ, Glaser H et al. Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc Natl Acad Sci USA 2010; 107: 12469–12474.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu L, Yang M, Kang R, Wang Z, Zhao Y, Yu Y et al. HMGB1-induced autophagy promotes chemotherapy resistance in leukemia cells. Leukemia 2011; 25: 23–31.

    PubMed  Google Scholar 

  81. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007; 282: 24131–24145.

    CAS  PubMed  Google Scholar 

  82. Fullgrabe J, Klionsky DJ, Joseph B . Histone post-translational modifications regulate autophagy flux and outcome. Autophagy 2013; 9: 1621–1623.

    CAS  PubMed  Google Scholar 

  83. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 2008; 105: 3374–3379.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee IH, Finkel T . Regulation of autophagy by the p300 acetyltransferase. J Biol Chem 2009; 284: 6322–6328.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lucas DM, Davis ME, Parthun MR, Mone AP, Kitada S, Cunningham KD et al. The histone deacetylase inhibitor MS-275 induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia cells. Leukemia 2004; 18: 1207–1214.

    CAS  PubMed  Google Scholar 

  86. Balasubramanian S, Ramos J, Luo W, Sirisawad M, Verner E, Buggy JJ . A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia 2008; 22: 1026–1034.

    CAS  PubMed  Google Scholar 

  87. Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C, Chung L et al. Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 2007; 110: 313–322.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lopez G, Torres K, Liu J, Hernandez B, Young E, Belousov R et al. Autophagic survival in resistance to histone deacetylase inhibitors: novel strategies to treat malignant peripheral nerve sheath tumors. Cancer Res 2011; 71: 185–196.

    CAS  PubMed  Google Scholar 

  89. Gammoh N, Lam D, Puente C, Ganley I, Marks PA, Jiang X . Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death. Proc Natl Acad Sci USA 2012; 109: 6561–6565.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Stankov MV, El Khatib M, Kumar Thakur B, Heitmann K, Panayotova-Dimitrova D, Schoening J et al. Histone deacetylase inhibitors induce apoptosis in myeloid leukemia by suppressing autophagy. Leukemia 2014; 28: 577–588.

    CAS  PubMed  Google Scholar 

  91. Torgersen ML, Engedal N, Boe SO, Hokland P, Simonsen A . Targeting autophagy potentiates the apoptotic effect of histone deacetylase inhibitors in t(8;21) AML cells. Blood 2013; 122: 2467–2476.

    CAS  PubMed  Google Scholar 

  92. Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M et al. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest 2009; 119: 1109–1123.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Yu Y, Yang L, Zhao M, Zhu S, Kang R, Vernon P et al. Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells. Leukemia 2012; 26: 1752–1760.

    CAS  PubMed  Google Scholar 

  94. Zhu S, Cao L, Yu Y, Yang L, Yang M, Liu K et al. Inhibiting autophagy potentiates the anticancer activity of IFN1@/IFNalpha in chronic myeloid leukemia cells. Autophagy 2013; 9: 317–327.

    PubMed  PubMed Central  Google Scholar 

  95. Rothe K, Lin H, Lin KB, Leung A, Wang HM, Malekesmaeili M et al. The core autophagy protein ATG4B is a potential biomarker and therapeutic target in CML stem/progenitor cells. Blood 2014; 123: 3622–3634.

    CAS  PubMed  Google Scholar 

  96. Helgason GV, Karvela M, Holyoake TL . Kill one bird with two stones: potential efficacy of BCR-ABL and autophagy inhibition in CML. Blood 2011; 118: 2035–2043.

    CAS  PubMed  Google Scholar 

  97. Goussetis DJ, Altman JK, Glaser H, McNeer JL, Tallman MS, Platanias LC . Autophagy is a critical mechanism for the induction of the antileukemic effects of arsenic trioxide. J Biol Chem 2010; 285: 29989–29997.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Qian W, Liu J, Jin J, Ni W, Xu W . Arsenic trioxide induces not only apoptosis but also autophagic cell death in leukemia cell lines via up-regulation of Beclin-1. Leukemia Res 2007; 31: 329–339.

    Google Scholar 

  99. Isakson P, Bjoras M, Boe SO, Simonsen A . Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein. Blood 2010; 116: 2324–2331.

    CAS  PubMed  Google Scholar 

  100. Wang Z, Cao L, Kang R, Yang M, Liu L, Zhao Y et al. Autophagy regulates myeloid cell differentiation by p62/SQSTM1-mediated degradation of PML-RARalpha oncoprotein. Autophagy 2011; 7: 401–411.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Iacobuzio-Donahue CA, Herman JM . Autophagy, p53, and pancreatic cancer. N Engl J Med 2014; 370: 1352–1353.

    CAS  PubMed  Google Scholar 

  102. Yang A, Rajeshkumar NV, Wang X, Yabuuchi S, Alexander BM, Chu GC et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov 2014; 4: 905–913.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Google Scholar 

  104. Linkermann A, Green DR . Necroptosis. N Engl J Med 2014; 370: 455–465.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Steinhart L, Belz K, Fulda S . Smac mimetic and demethylating agents synergistically trigger cell death in acute myeloid leukemia cells and overcome apoptosis resistance by inducing necroptosis. Cell Death Dis 2013; 4: e802.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Chromik J, Safferthal C, Serve H, Fulda S . Smac mimetic primes apoptosis-resistant acute myeloid leukaemia cells for cytarabine-induced cell death by triggering necroptosis. Cancer Lett 2014; 344: 101–109.

    CAS  PubMed  Google Scholar 

  107. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149: 1060–1072.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Dixon SJ, Stockwell BR . The role of iron and reactive oxygen species in cell death. Nat Chem Biol 2014; 10: 9–17.

    CAS  PubMed  Google Scholar 

  109. Zychlinsky A, Prevost MC, Sansonetti PJ . Shigella flexneri induces apoptosis in infected macrophages. Nature 1992; 358: 167–169.

    CAS  PubMed  Google Scholar 

  110. Li P, Allen H, Banerjee S, Franklin S, Herzog L, Johnston C et al. Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 1995; 80: 401–411.

    CAS  PubMed  Google Scholar 

  111. Kuida K, Lippke JA, Ku G, Harding MW, Livingston DJ, Su MS et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 1995; 267: 2000–2003.

    CAS  PubMed  Google Scholar 

  112. Bergsbaken T, Fink SL, Cookson BT . Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 2009; 7: 99–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303: 1532–1535.

    CAS  PubMed  Google Scholar 

  114. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Diff 2012; 19: 107–120.

    CAS  Google Scholar 

  115. McAfee Q, Zhang Z, Samanta A, Levi SM, Ma XH, Piao S et al. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc Natl Acad Sci USA 2012; 109: 8253–8258.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ferrara F, Palmieri S, Mele G . Prognostic factors and therapeutic options for relapsed or refractory acute myeloid leukemia. Haematologica 2004; 89: 998–1008.

    CAS  PubMed  Google Scholar 

  117. Keating MJ, Kantarjian H, Smith TL, Estey E, Walters R, Andersson B et al. Response to salvage therapy and survival after relapse in acute myelogenous leukemia. J Clin Oncol 1989; 7: 1071–1080.

    CAS  PubMed  Google Scholar 

  118. O'Brien S, Kantarjian H, Estey E, Koller C, Beran M, McCredie K et al. Mitoxantrone and high-dose etoposide for patients with relapsed or refractory acute leukemia. Cancer 1991; 68: 691–694.

    CAS  PubMed  Google Scholar 

  119. University of Glasgow; Medical Research Council; CRUK Trials unit Glasgow. Imatinib Mesylate With or Without Hydroxychloroquine in Treating Patients With Chronic Myeloid Leukemia. In: ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2000- [cited 2014 December 15]. Available from: http://clinicaltrials.gov/show/NCT01227135 NLM Identifier: NCT01227135.

Download references

Acknowledgements

This work was supported by National Institutes of Health grants R01CA181450 (MTL), R01CA160417 (DT) and R01CA137260 (DJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A R Sehgal.

Ethics declarations

Competing interests

Co-author Ravi Amaravadi is an inventor on a patent covering Lys05 derivatives that has been licensed to a pharmaceutical company for clinical development. The remaining authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sehgal, A., Konig, H., Johnson, D. et al. You eat what you are: autophagy inhibition as a therapeutic strategy in leukemia. Leukemia 29, 517–525 (2015). https://doi.org/10.1038/leu.2014.349

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.349

This article is cited by

Search

Quick links