Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem cell biology

AML1/ETO cooperates with HIF1α to promote leukemogenesis through DNMT3a transactivation

Abstract

The mechanisms by which AML1/ETO (A/E) fusion protein induces leukemogenesis in acute myeloid leukemia (AML) without mutagenic events remain elusive. Here we show that interactions between A/E and hypoxia-inducible factor 1α (HIF1α) are sufficient to prime leukemia cells for subsequent aggressive growth. In agreement with this, HIF1α is highly expressed in A/E-positive AML patients and strongly predicts inferior outcomes, regardless of gene mutations. Co-expression of A/E and HIF1α in leukemia cells causes a higher cell proliferation rate in vitro and more serious leukemic status in mice. Mechanistically, A/E and HIF1α form a positive regulatory circuit and cooperate to transactivate DNMT3a gene leading to DNA hypermethylation. Pharmacological or genetic interventions in the A/E–HIF1α loop results in DNA hypomethylation, a re-expression of hypermethylated tumor-suppressor p15INK4b and the blockage of leukemia growth. Thus high HIF1α expression serves as a reliable marker, which identifies patients with a poor prognosis in an otherwise prognostically favorable AML group and represents an innovative therapeutic target in high-risk A/E-driven leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Peterson LF, Zhang DE . The 8;21 translocation in leukemogenesis. Oncogene 2004; 23: 4255–4262.

    Article  CAS  PubMed  Google Scholar 

  2. Yuan Y, Zhou L, Miyamoto T, Iwasaki H, Harakawa N, Hetherington CJ et al. AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA 2001; 98: 10398–10403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang YY, Zhou GB, Yin T, Chen B, Shi JY, Liang WX et al. AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: implication in stepwise leukemogenesis and response to Gleevec. Proc Natl Acad Sci USA 2005; 102: 1104–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schessl C, Rawat VP, Cusan M, Deshpande A, Kohl TM, Rosten PM et al. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest 2005; 115: 2159–2168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schneider F, Bohlander SK, Schneider S, Papadaki C, Kakadyia P, Dufour A et al. AML1-ETO meets JAK2: clinical evidence for the two hit model of leukemogenesis from a myeloproliferative syndrome progressing to acute myeloid leukemia. Leukemia 2007; 21: 2199–2201.

    Article  CAS  PubMed  Google Scholar 

  6. Peterson LF, Boyapati A, Ahn EY, Biggs JR, Okumura AJ, Lo MC et al. Acute myeloid leukemia with the 8q22;21q22 translocation: secondary mutational events and alternative t(8;21) transcripts. Blood 2007; 110: 799–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kuchenbauer F, Schnittger S, Look T, Gilliland G, Tenen D, Haferlach T et al. Identification of additional cytogenetic and molecular genetic abnormalities in acute myeloid leukaemia with t(8;21)/AML1-ETO. Br J Haematol 2006; 134: 616–619.

    Article  CAS  PubMed  Google Scholar 

  8. Dohner K, Du J, Corbacioglu A, Scholl C, Schlenk RF, Dohner H . JAK2V617F mutations as cooperative genetic lesions in t(8;21)-positive acute myeloid leukemia. Haematologica 2006; 91: 1569–1570.

    PubMed  Google Scholar 

  9. Paschka P, Marcucci G, Ruppert AS, Mrozek K, Chen H, Kittles RA et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol 2006; 24: 3904–3911.

    Article  CAS  PubMed  Google Scholar 

  10. Keith B, Simon MC . Hypoxia-inducible factors, stem cells, and cancer. Cell 2007; 129: 465–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stroka DM, Burkhardt T, Desbaillets I, Wenger RH, Neil DA, Bauer C et al. HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J 2001; 15: 2445–2453.

    Article  CAS  PubMed  Google Scholar 

  12. Kuschel A, Simon P, Tug S . Functional regulation of HIF-1alpha under normoxia—is there more than post-translational regulation? J Cell Physiol 2012; 227: 514–524.

    Article  CAS  PubMed  Google Scholar 

  13. Gerber SA, Pober JS . IFN-alpha induces transcription of hypoxia-inducible factor-1alpha to inhibit proliferation of human endothelial cells. J Immunol 2008; 181: 1052–1062.

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Liu Y, Malek SN, Zheng P . Targeting HIF1alpha eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 2011; 8: 399–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Matsunaga T, Imataki O, Torii E, Kameda T, Shide K, Shimoda H et al. Elevated HIF-1alpha expression of acute myelogenous leukemia stem cells in the endosteal hypoxic zone may be a cause of minimal residual disease in bone marrow after chemotherapy. Leuk Res 2012; 36: e122–e124.

    Article  CAS  PubMed  Google Scholar 

  16. Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer cell 2010; 17: 13–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Linggi B, Muller-Tidow C, van de Locht L, Hu M, Nip J, Serve H et al. The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat Med 2002; 8: 743–750.

    Article  CAS  PubMed  Google Scholar 

  18. Kitabayashi I, Ida K, Morohoshi F, Yokoyama A, Mitsuhashi N, Shimizu K et al. The AML1-MTG8 leukemic fusion protein forms a complex with a novel member of the MTG8(ETO/CDR) family, MTGR1. Mol Cell Biol 1998; 18: 846–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM . ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci USA 1998; 95: 10860–10865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu S, Shen T, Huynh L, Klisovic MI, Rush LJ, Ford JL et al. Interplay of RUNX1/MTG8 and DNA methyltransferase 1 in acute myeloid leukemia. Cancer Res 2005; 65: 1277–1284.

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Cheney MD, Gaudet JJ, Chruszcz M, Lukasik SM, Sugiyama D et al. The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO's activity. Cancer cell 2006; 9: 249–260.

    Article  PubMed  Google Scholar 

  22. Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer cell 2007; 12: 457–466.

    Article  CAS  PubMed  Google Scholar 

  23. Liu S, Wu LC, Pang J, Santhanam R, Schwind S, Wu YZ et al. Sp1/NFkappaB/HDAC/miR-29b regulatory network in KIT-driven myeloid leukemia. Cancer cell 2010; 17: 333–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shen N, Yan F, Pang J, Wu LC, Al-Kali A, Litzow MR et al. A nucleolin-DNMT1 regulatory axis in acute myeloid leukemogenesis. Oncotarget 2014; 5: 5494–5509.

    PubMed  PubMed Central  Google Scholar 

  25. de Jonge HJ, Valk PJ, Veeger NJ, ter Elst A, den Boer M L, Cloos J et al. High VEGFC expression is associated with unique gene expression profiles and predicts adverse prognosis in pediatric and adult acute myeloid leukemia. Blood 2010; 116: 1747–1754.

    Article  CAS  PubMed  Google Scholar 

  26. Litz J, Krystal GW . Imatinib inhibits c-Kit-induced hypoxia-inducible factor-1alpha activity and vascular endothelial growth factor expression in small cell lung cancer cells. Mol Cancer Ther 2006; 5: 1415–1422.

    Article  CAS  PubMed  Google Scholar 

  27. Gardini A, Cesaroni M, Luzi L, Okumura AJ, Biggs JR, Minardi SP et al. AML1/ETO oncoprotein is directed to AML1 binding regions and co-localizes with AML1 and HEB on its targets. PLoS Genet 2008; 4: e1000275.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ptasinska A, Assi SA, Mannari D, James SR, Williamson D, Dunne J et al. Depletion of RUNX1/ETO in t(8;21) AML cells leads to genome-wide changes in chromatin structure and transcription factor binding. Leukemia 2012; 26: 1829–1841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ortiz-Barahona A, Villar D, Pescador N, Amigo J, del Peso L . Genome-wide identification of hypoxia-inducible factor binding sites and target genes by a probabilistic model integrating transcription-profiling data and in silico binding site prediction. Nucleic Acids Res 2010; 38: 2332–2345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xia X, Lemieux ME, Li W, Carroll JS, Brown M, Liu XS et al. Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis. Proc Natl Acad Sci USA 2009; 106: 4260–4265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM, Ragoussis J et al. Genome-wide association of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem 2009; 284: 16767–16775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yan M, Kanbe E, Peterson LF, Boyapati A, Miao Y, Wang Y et al. A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat Med 2006; 12: 945–949.

    Article  CAS  PubMed  Google Scholar 

  33. Kong D, Park EJ, Stephen AG, Calvani M, Cardellina JH, Monks A et al. Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res 2005; 65: 9047–9055.

    Article  CAS  PubMed  Google Scholar 

  34. Herman JG, Jen J, Merlo A, Baylin SB . Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Res 1996; 56: 722–727.

    CAS  PubMed  Google Scholar 

  35. Higuchi M, O'Brien D, Kumaravelu P, Lenny N, Yeoh EJ, Downing JR . Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8; 21) acute myeloid leukemia. Cancer cell 2002; 1: 63–74.

    Article  CAS  PubMed  Google Scholar 

  36. Vaupel P . The role of hypoxia-induced factors in tumor progression. Oncologist 2004; 9 (Suppl 5): 10–17.

    Article  CAS  PubMed  Google Scholar 

  37. Unruh A, Ressel A, Mohamed HG, Johnson RS, Nadrowitz R, Richter E et al. The hypoxia-inducible factor-1 alpha is a negative factor for tumor therapy. Oncogene 2003; 22: 3213–3220.

    Article  CAS  PubMed  Google Scholar 

  38. Baba Y, Nosho K, Shima K, Irahara N, Chan AT, Meyerhardt JA et al. HIF1A overexpression is associated with poor prognosis in a cohort of 731 colorectal cancers. Am J Pathol 2010; 176: 2292–2301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 1998; 92: 2322–2333.

    CAS  PubMed  Google Scholar 

  40. Cairoli R, Beghini A, Grillo G, Nadali G, Elice F, Ripamonti CB et al. Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood 2006; 107: 3463–3468.

    Article  CAS  PubMed  Google Scholar 

  41. Yoo SJ, Chi HS, Jang S, Seo EJ, Seo JJ, Lee JH et al. Quantification of AML1-ETO fusion transcript as a prognostic indicator in acute myeloid leukemia. Haematologica 2005; 90: 1493–1501.

    CAS  PubMed  Google Scholar 

  42. Li Y, Gao L, Luo X, Wang L, Gao X, Wang W et al. Epigenetic silencing of microRNA-193a contributes to leukemogenesis in t(8; 21) acute myeloid leukemia by activating the PTEN/PI3K signal pathway. Blood 2013; 121: 499–509.

    Article  CAS  PubMed  Google Scholar 

  43. Maiques-Diaz A, Chou FS, Wunderlich M, Gomez-Lopez G, Jacinto FV, Rodriguez-Perales S et al. Chromatin modifications induced by the AML1-ETO fusion protein reversibly silence its genomic targets through AML1 and Sp1 binding motifs. Leukemia 2012; 26: 1329–1337.

    Article  CAS  PubMed  Google Scholar 

  44. Wang L, Gural A, Sun XJ, Zhao X, Perna F, Huang G et al. The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science 2011; 333: 765–769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shia WJ, Okumura AJ, Yan M, Sarkeshik A, Lo MC, Matsuura S et al. PRMT1 interacts with AML1-ETO to promote its transcriptional activation and progenitor cell proliferative potential. Blood 2012; 119: 4953–4962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peng ZG, Zhou MY, Huang Y, Qiu JH, Wang LS, Liao SH et al. Physical and functional interaction of Runt-related protein 1 with hypoxia-inducible factor-1alpha. Oncogene 2008; 27: 839–847.

    Article  CAS  PubMed  Google Scholar 

  47. Freedman SJ, Sun ZY, Poy F, Kung AL, Livingston DM, Wagner G et al. Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1 alpha. Proc Natl Acad Sci USA 2002; 99: 5367–5372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fahling M, Persson AB, Klinger B, Benko E, Steege A, Kasim M et al. Multilevel regulation of HIF-1 signaling by TTP. Mol Biol Cell 2012; 23: 4129–4141.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lee JS, Kim Y, Bhin J, Shin HJ, Nam HJ, Lee SH et al. Hypoxia-induced methylation of a pontin chromatin remodeling factor. Proc Natl Acad Sci USA 2011; 108: 13510–13515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Robinson CM, Neary R, Levendale A, Watson CJ, Baugh JA . Hypoxia-induced DNA hypermethylation in human pulmonary fibroblasts is associated with Thy-1 promoter methylation and the development of a pro-fibrotic phenotype. Respir Res 2012; 13: 74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Shahrzad S, Bertrand K, Minhas K, Coomber BL . Induction of DNA hypomethylation by tumor hypoxia. Epigenetics 2007; 2: 119–125.

    Article  PubMed  Google Scholar 

  52. Liu Q, Liu L, Zhao Y, Zhang J, Wang D, Chen J et al. Hypoxia induces genomic DNA demethylation through the activation of HIF-1alpha and transcriptional upregulation of MAT2A in hepatoma cells. Mol Cancer Ther 2011; 10: 1113–1123.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by grants from the National Institutes of Health/National Cancer Institute (R01CA149623, R01CA104509 and R21CA155915), the Hormel Foundation, the National Natural Science Foundation of China (90919044, 30971297, 81170518, 81000221, 81370010, 81171820 and 81370635), the National Public Health Grand Research Foundation (201202017), the Capital Public Health Project (Z111107067311070), the Capital Medical Development Scientific Research Fund (2007–2040), the Beijing Natural Science Foundation (7122169 and 7112126), the Beijing New Stars Program of Science and Technology (2010B075) and the Italian Association for Cancer Research (IG-11949).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S J Liu or L Yu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Yan, F., Lin, J. et al. AML1/ETO cooperates with HIF1α to promote leukemogenesis through DNMT3a transactivation. Leukemia 29, 1730–1740 (2015). https://doi.org/10.1038/leu.2015.56

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.56

This article is cited by

Search

Quick links