Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute myeloid leukemia

Mutations in the CCND1 and CCND2 genes are frequent events in adult patients with t(8;21)(q22;q22) acute myeloid leukemia

Abstract

Core-binding factor acute myeloid leukemia (CBF-AML) is defined by the presence of either t(8;21)(q22;q22)/RUNX1-RUNX1T1 or inv(16)(p13.1q22)/t(16;16)(p13.1;q22)/CBFB-MYH11. The resulting fusion genes require a ‘second hit’ to initiate leukemogenesis. Mutation assessment of 177 adults with CBF-AML, including 68 with t(8;21) and 109 with inv(16)/t(16;16), identified not only mutations well known in CBF-AML but also mutations in the CCND1 and CCND2 genes, which represent novel frequent molecular alterations in AML with t(8;21). Altogether, CCND1 (n=2) and CCND2 (n=8) mutations were detected in 10 (15%) patients with t(8;21) in our cohort. A single CCND2 mutation was also found in 1 (0.9%) patient with inv(16). In contrast, CCND1 and CCND2 mutations were detected in only 11 (0.77%) of 1426 non-CBF-AML patients. All CCND2 mutations cluster around the highly conserved amino-acid residue threonine 280 (Thr280). We show that Thr280Ala-mutated CCND2 leads to increased phosphorylation of the retinoblastoma protein, thereby causing significant cell cycle changes and increased proliferation of AML cell lines. The identification of CCND1 and CCND2 mutations as frequent mutational events in t(8;21) AML may provide further justification for cell cycle-directed therapy in this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Speck NA, Gilliland DG . Core binding factors in haematopoiesis and leukemia. Nat Rev Cancer 2002; 2: 502–513.

    Article  CAS  PubMed  Google Scholar 

  2. Mrózek K, Marcucci G, Paschka P, Bloomfield CD . Advances in molecular genetics and treatment of core-binding factor acute myeloid leukemia. Curr Opin Oncol 2008; 20: 711–718.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127: 2391–2405.

    Article  CAS  PubMed  Google Scholar 

  4. Marcucci G, Mrózek K, Ruppert AS, Maharry K, Kolitz JE, Moore JO et al. Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those with inv(16): a Cancer and Leukemia Group B study. J Clin Oncol 2005; 23: 5705–5717.

    Article  PubMed  Google Scholar 

  5. Appelbaum FR, Kopecky KJ, Tallman MS, Slovak ML, Gundacker HM, Kim HT et al. The clinical spectrum of adult acute myeloid leukaemia associated with core binding factor translocations. Br J Haematol 2006; 135: 165–173.

    Article  PubMed  Google Scholar 

  6. Sinha C, Cunningham LC, Liu PP . Core binding factor acute myeloid leukemia: new prognostic categories and therapeutic opportunities. Semin Hematol 2015; 52: 215–222.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Duployez N, Marceau-Renaut A, Boissel N, Petit A, Bucci M, Geffroy S et al. Comprehensive mutational profiling of core binding factor acute myeloid leukemia. Blood 2016; 127: 2451–2459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grimwade D, Ivey A, Huntly BJP . Molecular landscape of acute myeloid leukemia in younger adults and its clinical significance. Blood 2016; 127: 29–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Micol J-B, Duployez N, Boissel N, Petit A, Geffroy S, Nibourel O et al. Frequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocations. Blood 2014; 124: 1445–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hartmann L, Dutta S, Opatz S, Vosberg S, Reiter K, Leubolt G et al. ZBTB7A mutations in acute myeloid leukaemia with t(8;21) translocation. Nat Commun 2016; 7: 11733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lavallée V-P, Lemieux S, Boucher G, Gendron P, Boivin I, Armstrong RN et al. RNA-sequencing analysis of core binding factor AML identifies recurrent ZBTB7A mutations and defines RUNX1-CBFA2T3 fusion signature [letter]. Blood 2016; 127: 2498–2501.

    Article  PubMed  Google Scholar 

  12. Deshpande A, Sicinski P, Hinds PW . Cyclins and cdks in development and cancer: a perspective. Oncogene 2005; 24: 2909–2915.

    Article  CAS  PubMed  Google Scholar 

  13. Malumbres M, Barbacid M . To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 2001; 1: 222–231.

    Article  CAS  PubMed  Google Scholar 

  14. Mrózek K, Carroll AJ, Maharry K, Rao KW, Patil SR, Pettenati MJ et al. Central review of cytogenetics is necessary for cooperative group correlative and clinical studies of adult acute leukemia: the Cancer and Leukemia Group B experience. Int J Oncol 2008; 33: 239–244.

    PubMed  Google Scholar 

  15. Kroll KW, Eisfeld A-K, Lozanski A, Bloomfield CD, Byrd JC, Blachly JS . MuCor: mutation aggregation and correlation. Bioinformatics 2016; 32: 1557–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a Cancer and Leukemia Group B study. Cancer Res 2001; 61: 7233–7239.

    CAS  PubMed  Google Scholar 

  17. Kida A, Kakihana K, Kotani S, Kurosu T, Miura O . Glycogen synthethase kinase-3β and p38 phosphorylate cyclin D2 on Thr280 to trigger its ubiquitin/proteasome-dependent degradation in hematopoietic cells. Oncogene 2007; 26: 6630–6640.

    Article  CAS  PubMed  Google Scholar 

  18. Mirzaa GM, Parry DA, Fry AE, Giamanco KA, Schwartzentruber J, Vanstone M et al. De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. Nat Genet 2014; 46: 510–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Diehl JA, Cheng M, Roussel MF, Sherr CJ . Glycogen synthase kinase-3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 1998; 12: 3499–3511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alt JR, Cleveland JL, Hannink M, Diehl JA . Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev 2000; 14: 3102–3114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shao J, Sheng H, DuBois RN, Beauchamp RD . Oncogenic Ras-mediated cell growth arrest and apoptosis are associated with increased ubiquitin-dependent cyclin D1 degradation. J Biol Chem 2000; 275: 22916–22924.

    Article  CAS  PubMed  Google Scholar 

  22. Ely S, Di Liberto M, Niesvizky R, Baughn LB, Cho HJ, Hatada EN et al. Mutually exclusive cyclin-dependent kinase 4/cyclin D1 and cyclin dependent kinase 6/cyclin D2 pairing inactivates retinoblastoma protein and promotes cell cycle dysregulation in multiple myeloma. Cancer Res 2005; 65: 11345–11353.

    Article  CAS  PubMed  Google Scholar 

  23. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  Google Scholar 

  24. Tartaglia M, Kalidas K, Shaw A, Song X, Musat DL, van der Burgt I et al. PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet 2002; 70: 1555–1563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gibson WT, Hood RL, Zhan SH, Bulman DE, Fejes AP, Moore R et al. Mutations in EZH2 cause Weaver syndrome. Am J Hum Genet 2012; 90: 110–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Van Houdt KJK, Nowakowska BA, Sousa SB, van Schaik BDC, Seuntjens E, Avonce N et al. Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome. Nat Genet 2012; 44: 445–449.

    Article  CAS  PubMed  Google Scholar 

  27. Boyle MI, Jespersgaard C, Brøndum-Nielsen K, Bisgaard A-M, Tümer Z . Cornelia de Lange syndrome. Clin Genet 2015; 88: 1–12.

    Article  CAS  PubMed  Google Scholar 

  28. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL . Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 2011; 11: 558–572.

    Article  CAS  PubMed  Google Scholar 

  29. Mao X, Cao B, Wood TE, Hurren R, Tong J, Wang X et al. A small-molecule inhibitor of D-cyclin transactivation displays preclinical efficacy in myeloma and leukemia via phosphoinositide 3-kinase pathway. Blood 2011; 117: 1986–1997.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patients who consented to participate in these clinical trials and the families who supported them; to Donna Bucci and the CALGB/Alliance Leukemia Tissue Bank at The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA for sample processing and storage services and Lisa J Sterling and Chris Finks for data management. This work was supported in part by the National Cancer Institute (grants CA101140, CA140158, CA180861, CA196171, CA016058, CA180821, CA180882 and CA077658), the Leukemia Clinical Research Foundation, the Warren D. Brown Foundation, the Pelotonia Fellowship Program (to A-K Eisfeld) and by an allocation of computing resources from The Ohio Supercomputer Center.

Author contributions

A-KE, JCB, KM and CDB contributed to the study design; A-KE, AdlC, JCB, SS, CJW, KM and CDB contributed to data interpretation, A-KE, KM, AdlC and CDB wrote the manuscript; A-KE and SO generated the libraries for the targeted sequencing approach; A-KE analyzed the sequencing data; CS, MB and CJW performed laboratory-based research; JSB and KWK performed the data processing; JK and DN performed statistical analysis; AJC, JCB, JEK, MRB, RMS, BLP, KM and CDB were involved directly or indirectly in the care of patients and/or sample procurement. All authors read and agreed on the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A-K Eisfeld, K Mrózek or C D Bloomfield.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eisfeld, AK., Kohlschmidt, J., Schwind, S. et al. Mutations in the CCND1 and CCND2 genes are frequent events in adult patients with t(8;21)(q22;q22) acute myeloid leukemia. Leukemia 31, 1278–1285 (2017). https://doi.org/10.1038/leu.2016.332

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.332

This article is cited by

Search

Quick links