Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The multimodal connectivity of the hippocampal complex in auditory and visual hallucinations

Abstract

Hallucinations constitute one of the most representative and disabling symptoms of schizophrenia. Several Magnetic Resonance Imaging (MRI) findings support the hypothesis that distinct patterns of connectivity, particularly within networks involving the hippocampal complex (HC), could be associated with different hallucinatory modalities. The aim of this study was to investigate HC connectivity as a function of the hallucinatory modality, that is, auditory or visual. Two carefully selected subgroups of schizophrenia patients with only auditory hallucinations (AH) or with audio-visual hallucinations (A+VH) were compared using the following three complementary multimodal MRI methods: resting state functional MRI, diffusion MRI and structural MRI were used to analyze seed-based Functional Connectivity (sb-FC), Tract-Based Spatial Statistics (TBSS) and shape analysis, respectively. Sb-FC was significantly higher between the HC, the medial prefrontal cortex (mPFC) and the caudate nuclei in A+VH patients compared with the AH group. Conversely, AH patients exhibited a higher sb-FC between the HC and the thalamus in comparison with the A+VH group. In the A+VH group, TBSS showed specific higher white matter connectivity in the pathways connecting the HC with visual areas, such as the forceps major and the inferior-fronto-occipital fasciculus than in the AH group. Finally, shape analysis showed localized hippocampal hypertrophy in the A+VH group. Functional results support the fronto-limbic dysconnectivity hypothesis of schizophrenia, while specific structural findings indicate that plastic changes are associated with hallucinations. Together, these results suggest that there are distinct connectivity patterns in patients with schizophrenia that depend on the sensory-modality, with specific involvement of the HC in visual hallucinations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Andreasen NC, Flaum M . Schizophrenia: the characteristic symptoms. Schizophr Bull 1991; 17: 27–49.

    Article  CAS  Google Scholar 

  2. Cummings JL, Miller BL . Visual hallucinations: clinical occurrence and use in differential diagnosis. West J Med 1987; 146: 46.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bracha HS, Wolkowitz OM, Lohr JB, Karson CN, Bigelow LB . High prevalence of visual hallucinations in research subjects with chronic schizophrenia. Am J Psychiatry 1989; 146: 526–528.

    Article  CAS  Google Scholar 

  4. Braun CMJ, Dumont M, Duval J, Hamel-Hébert I, Godbout L . Brain modules of hallucination: an analysis of multiple patients with brain lesions. J Psychiatry Neurosci 2003; 28: 432.

    PubMed  PubMed Central  Google Scholar 

  5. Allen P, Larøi F, McGuire PK, Aleman A . The hallucinating brain: a review of structural and functional neuroimaging studies of hallucinations. Neurosci Biobehav Rev 2008; 32: 175–191.

    Article  Google Scholar 

  6. Jardri R, Pouchet A, Pins D, Thomas P . Cortical activations during auditory verbal hallucinations in schizophrenia: a coordinate-based meta-analysis. Am J Psychiatry 2011; 168: 73–81.

    Article  Google Scholar 

  7. Ryan L, Nadel L, Keil K, Putnam K, Schnyer D, Trouard T et al. Hippocampal complex and retrieval of recent and very remote autobiographical memories: evidence from functional magnetic resonance imaging in neurologically intact people. Hippocampus 2001; 11: 707–714.

    Article  CAS  PubMed Central  Google Scholar 

  8. Buckholtz JW, Meyer-Lindenberg A . Psychopathology and the human connectome: toward a transdiagnostic model of risk for mental illness. Neuron 2012; 74: 990–1004.

    Article  CAS  Google Scholar 

  9. ffytche DH . The hodology of hallucinations. Cortex 2008; 44: 1067–1083.

    Article  Google Scholar 

  10. Friston KJ . The disconnection hypothesis. Schizophr Res 1998; 30: 115–125.

    Article  CAS  Google Scholar 

  11. Stephan KE, Baldeweg T, Friston KJ . Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry 2006; 59: 929–939.

    Article  CAS  Google Scholar 

  12. Stephan KE, Friston KJ, Frith CD . Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull 2009; 35: 509–527.

    Article  PubMed Central  Google Scholar 

  13. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 2011; 473: 221–225.

    Article  CAS  PubMed Central  Google Scholar 

  14. Sullivan PF, Kendler KS, Neale MC . Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003; 60: 1187–1192.

    Article  PubMed Central  Google Scholar 

  15. Hoffman RE, Hampson M . Functional connectivity studies of patients with auditory verbal hallucinations. Front Hum Neurosci 2012; 6: 6.

    PubMed  PubMed Central  Google Scholar 

  16. Allen P, Modinos G, Hubl D, Shields G, Cachia A, Jardri R et al. Neuroimaging auditory hallucinations in schizophrenia: from neuroanatomy to neurochemistry and beyond. Schizophr Bull 2012; 38: 695–703.

    Article  PubMed Central  Google Scholar 

  17. Jardri R, Thomas P, Delmaire C, Delion P, Pins D . The neurodynamic organization of modality-dependent hallucinations. Cereb Cortex 2013 doi:10.1093/cercor/bhs082 (in press).

  18. Hubl D, Koenig T, Strik W, Federspiel A, Kreis R, Boesch C et al. Pathways that make voices: white matter changes in auditory hallucinations. Arch Gen Psychiatry 2004; 61: 658–668.

    Article  Google Scholar 

  19. Shergill SS, Kanaan RA, Chitnis XA, O’Daly O, Jones DK, Frangou S et al. A diffusion tensor imaging study of fasciculi in schizophrenia. Am J Psychiatry 2007; 164: 467–473.

    Article  Google Scholar 

  20. Rotarska-Jagiela A, Oertel-Knoechel V, DeMartino F, van de Ven V, Formisano E, Roebroeck A et al. Anatomical brain connectivity and positive symptoms of schizophrenia: a diffusion tensor imaging study. Psychiatry Res 2009; 174: 9–16.

    Article  PubMed Central  Google Scholar 

  21. de Weijer AD, Neggers SF, Diederen KM, Mandl RW, Kahn RS, Pol HE et al. Aberrations in the arcuate fasciculus are associated with auditory verbal hallucinations in psychotic and in non‐psychotic individuals. Hum Brain Mapp 2013 doi:10.1002/hbm.21463 (in press).

  22. Catani M, Craig MC, Forkel SJ, Kanaan R, Picchioni M, Toulopoulou T et al. Altered integrity of perisylvian language pathways in schizophrenia: relationship to auditory hallucinations. Biol Psychiatry 2011; 70: 1143–1150.

    Article  Google Scholar 

  23. de Weijer AD, Mandl RCW, Diederen KMJ, Neggers SFW, Kahn RS, Pol HEH et al. Microstructural alterations of the arcuate fasciculus in schizophrenia patients with frequent auditory verbal hallucinations. Schizophr Res 2011; 130: 68–77.

    Article  CAS  Google Scholar 

  24. Johansen-Berg H, Rushworth MFS . Using diffusion imaging to study human connectional anatomy. Annu Rev Neurosci 2009; 32: 75–94.

    Article  CAS  Google Scholar 

  25. Dong Q, Welsh RC, Chenevert TL, Carlos RC, Maly-Sundgren P, Gomez-Hassan DM et al. Clinical applications of diffusion tensor imaging. J Magn Reson Imaging 2004; 19: 6–18.

    Article  Google Scholar 

  26. Ashtari M, Cottone J, Ardekani BA, Cervellione K, Szeszko PR, Wu J et al. Disruption of white matter integrity in the inferior longitudinal fasciculus in adolescents with schizophrenia as revealed by fiber tractography. Arch Gen Psychiatry 2007; 64: 1270–1280.

    Article  PubMed Central  Google Scholar 

  27. Tamminga CA, Stan AD, Wagner AD . The hippocampal formation in schizophrenia. Am J Psychiatry 2010; 167: 1178–1193.

    Article  Google Scholar 

  28. Liddle PF, Friston KJ, Frith CD, Hirsch SR, Jones T, Frackowiak RS . Patterns of cerebral blood flow in schizophrenia. Brit J Psychiatry 1992; 160: 179–186.

    Article  CAS  Google Scholar 

  29. Silbersweig DA, Stern E, Frith C, Cahill C, Holmes A, Grootoonk S et al. A functional neuroanatomy of hallucinations in schizophrenia. Nature 1995; 378: 176–179.

    Article  CAS  Google Scholar 

  30. Liddle PF, Lane CJ, Ngan ET . Immediate effects of risperidone on cortico—striato—thalamic loops and the hippocampus. Brit J Psychiatry 2000; 177: 402–407.

    Article  CAS  Google Scholar 

  31. Behrendt R-P . Contribution of hippocampal region CA3 to consciousness and schizophrenic hallucinations. Neurosci Biobehav Rev 2010; 34: 1121–1136.

    Article  Google Scholar 

  32. Oertel V, Rotarska-Jagiela A, van de Ven VG, Haenschel C, Maurer K, Linden DE . Visual hallucinations in schizophrenia investigated with functional magnetic resonance imaging. Psychiatry Res 2007; 156: 269–273.

    Article  Google Scholar 

  33. Vignal J-P, Maillard L, McGonigal A, Chauvel P . The dreamy state: hallucinations of autobiographic memory evoked by temporal lobe stimulations and seizures. Brain 2007; 130: 88–99.

    Article  Google Scholar 

  34. Sui J, Yu Q, He H, Pearlson GD, Calhoun VD . A selective review of multimodal fusion methods in schizophrenia. Front Hum Neurosci 2012; 6: 27.

    Article  PubMed Central  Google Scholar 

  35. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci USA 2000; 97: 4398–4403.

    Article  CAS  Google Scholar 

  36. Kay SR, Fiszbein A, Opler LA . The Positive and Negative Syndrome Scale (PANSS) for Schizophrenia. Schizophr Bull 1987; 13: 261–276.

    Article  CAS  Google Scholar 

  37. Andreasen NC . Methods for assessing positive and negative symptoms. Mod Probl Pharmacopsychiatry 1990; 24: 73–88.

    Article  CAS  Google Scholar 

  38. Gardner DM, Murphy AL, O’Donnell H, Centorrino F, Baldessarini RJ . International Consensus Study of Antipsychotic Dosing. Am J Psychiatry 2010; 167: 686–693.

    Article  Google Scholar 

  39. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 2004; 23 (Supplement 1): S208–S219.

    Article  Google Scholar 

  40. David CN, Greenstein D, Clasen L, Gochman P, Miller R, Tossell JW et al. Childhood Onset Schizophrenia: High Rate of Visual Hallucinations. J Am Acad Child Adolesc Psychiatry 2011; 50: 681–686, .e3.

    Article  PubMed Central  Google Scholar 

  41. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 2006; 31: 1487–1505.

    Article  Google Scholar 

  42. Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ . Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 1999; 18: 712–721.

    Article  CAS  Google Scholar 

  43. Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC . Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med 1995; 33: 636–647.

    Article  CAS  Google Scholar 

  44. Goebel R, Esposito F, Formisano E . Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: from single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Hum Brain Mapp 2006; 27: 392–401.

    Article  PubMed Central  Google Scholar 

  45. Patenaude B, Smith SM, Kennedy DN, Jenkinson MA . Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage 2011; 56: 907–22.

    Article  PubMed Central  Google Scholar 

  46. Frisoni GB, Sabattoli F, Lee AD, Dutton RA, Toga AW, Thompson PM . In vivo neuropathology of the hippocampal formation in AD: a radial mapping MR-based study. NeuroImage 2006; 32: 104–110.

    Article  CAS  Google Scholar 

  47. Thierry A-M, Gioanni Y, Dégénétais E, Glowinski J . Hippocampo-prefrontal cortex pathway: anatomical and electrophysiological characteristics. Hippocampus 2000; 10: 411–419.

    Article  CAS  Google Scholar 

  48. Howes OD, Kapur S . The Dopamine Hypothesis of Schizophrenia: Version III—The Final Common Pathway. Schizophr Bull 2009; 35: 549–562.

    Article  PubMed Central  Google Scholar 

  49. Howes OD, Shotbolt P, Bloomfield M, Daalman K, Demjaha A, Diederen KMJ et al. Dopaminergic function in the psychosis spectrum: an [18F]-DOPA imaging study in healthy individuals with auditory hallucinations. Schizophr Bull 2013 doi:10.1093/schbul/sbr195 (in press).

  50. Shim YS, Kim J-S, Shon YM, Chung Y-A, Ahn K-J, Yang D-W . A serial study of regional cerebral blood flow deficits in patients with left anterior thalamic infarction: anatomical and neuropsychological correlates. J Neurol Sci 2008; 266: 84–91.

    Article  Google Scholar 

  51. Byrne JH, Gray L Neuroscience Online: An Electronic Textbook for the Neurosciences http://nba.uth.tmc.edu/neuroscience/. Department of Neurobiology and Anatomy—The University of Texas Medical School at Houston (UTHealth)© 1997-2012, all rights reserved:.

  52. Ojemann GA . Cortical Organization of Language. J Neurosci 1991; 11: 2281–7.

    Article  CAS  Google Scholar 

  53. Diederen KM, Daalman K, de Weijer AD, Neggers SF, Van Gastel W, Blom JD et al. Auditory hallucinations elicit similar brain activation in psychotic and nonpsychotic individuals. Schizophr Bull 2011; 38: 1074–1082.

    Article  PubMed Central  Google Scholar 

  54. Gloor P, Salanova V, Olivier A, Quesney LF . The human dorsal hippocampal commissure. an anatomically identifiable and functional pathway. Brain 1993; 116: 1249–1273.

    Article  Google Scholar 

  55. Burgess PW, Veitch E, de Lacy Costello A, Shallice T . The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia 2000; 38: 848–63.

    Article  CAS  Google Scholar 

  56. Catani M, Jones DK, Donato R, Ffytche DH . Occipito Temporal Connections in the Human Brain. Brain 2003; 126: 2093–2107.

    Article  PubMed Central  Google Scholar 

  57. Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS et al. Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, In Vivo, DT-MRI Study. Cereb Cortex 2005; 15: 854–869.

    Article  Google Scholar 

  58. Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA . A pathophysiological framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci 2011; 12: 585–601.

    Article  CAS  PubMed Central  Google Scholar 

  59. Leutgeb JK, Leutgeb S, Treves A, Meyer R, Barnes CA, McNaughton BL et al. Progressive transformation of hippocampal neuronal representations in ‘morphed’ environments. Neuron 2005; 48: 345–358.

    Article  CAS  Google Scholar 

  60. Van Essen DC . A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 1997; 385: 313–318.

    Article  CAS  Google Scholar 

  61. Qiu A, Tuan TA, Woon PS, Abdul-Rahman MF, Graham S, Sim K . Hippocampal-cortical structural connectivity disruptions in schizophrenia: An integrated perspective from hippocampal shape, cortical thickness, and integrity of white matter bundles. NeuroImage 2010; 52: 1181–1189.

    Article  Google Scholar 

  62. Kühn S, Musso F, Mobascher A, Warbrick T, Winterer G, Gallinat J . Hippocampal subfields predict positive symptoms in schizophrenia: first evidence from brain morphometry. Transl Psychiatry 2012; 2: e127.

    Article  PubMed Central  Google Scholar 

  63. Carter CS, Heckers S, Nichols T, Pine DS, Strother S . Optimizing the Design and Analysis of Clinical Functional Magnetic Resonance Imaging Research Studies. Biol Psychiatry 2008; 64: 842–849.

    Article  Google Scholar 

  64. Ashburner J . A fast diffeomorphic image registration algorithm. NeuroImage 2007; 38: 95–113.

    Article  Google Scholar 

  65. Klein A, Andersson J, Ardekani BA, Ashburner J, Avants B, Chiang M-C et al. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 2009; 46: 786–802.

    Article  PubMed Central  Google Scholar 

  66. Yassa MA, Stark CE . A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe. NeuroImage 2009; 44: 319–327.

    Article  Google Scholar 

  67. Tahmasebi AM, Abolmaesumi P, Zheng ZZ, Munhall KG, Johnsrude IS . Reducing inter-subject anatomical variation: effect of normalization method on sensitivity of functional magnetic resonance imaging data analysis in auditory cortex and the superior temporal region. NeuroImage 2009; 47: 1522–1531.

    Article  PubMed Central  Google Scholar 

  68. Meyer-Lindenberg A . From maps to mechanisms through neuroimaging of schizophrenia. Nature 2010; 468: 194–202.

    Article  CAS  PubMed Central  Google Scholar 

  69. Hubl D, Dougoud-Chauvin V, Zeller M, Federspiel A, Boesch C, Strik W et al. Structural analysis of Heschl’s gyrus in schizophrenia patients with auditory hallucinations. Neuropsychobiology 2010; 61: 1–9.

    Article  Google Scholar 

  70. van Swam C, Federspiel A, Hubl D, Wiest R, Boesch C, Vermathen P et al. Possible dysregulation of cortical plasticity in auditory verbal hallucinations–a cortical thickness study in schizophrenia. J Psychiatr Res 2012; 46: 1015–1023.

    Article  Google Scholar 

  71. Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S et al. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci 2008; 31: 234–242.

    Article  CAS  PubMed Central  Google Scholar 

  72. Belsky J, Jonassaint C, Pluess M, Stanton M, Brummett B, Williams R . Vulnerability genes or plasticity genes. Mol Psychiatry 2009; 14: 746–754.

    Article  CAS  PubMed Central  Google Scholar 

  73. Demeulemeester M, Amad A, Bubrovszky M, Pins D, Thomas P, Jardri R . What is the real effect of 1-Hz repetitive transcranial magnetic stimulation on hallucinations? Controlling for publication bias in neuromodulation trials. Biol Psychiatry 2012; 71: e15–16.

    Article  Google Scholar 

  74. Hoffman RE, Hampson M, Wu K, Anderson AW, Gore JC, Buchanan RJ et al. Probing the pathophysiology of auditory/verbal hallucinations by combining functional magnetic resonance imaging and transcranial magnetic stimulation. Cerebral Cortex 2007; 17: 2733–2743.

    Article  Google Scholar 

  75. Vercammen A, Knegtering H, Liemburg EJ, Boer JA, den, Aleman A . Functional connectivity of the temporo-parietal region in schizophrenia: effects of repetitive transcranial magnetic stimulation treatment of auditory hallucinations. J Psychiatr Res 2010; 44: 725–731.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the GDR CNRS - 3557 ‘Institut de Recherche en Psychiatrie’, as well as by grants from the ERANET-NEURON program (AUSZ_EUCan), the Program Hospitalier de Recherche Clinique (PHRC Multimodhal), the Pierre Houriez foundation (hosted by the Fondation de France), the Pierre Deniker foundation and the NRJ foundation. M Mondino held a doctoral fellowship from la Région Rhône-Alpes (France).

Author contributions

All the authors designed the study; AA, PT, DP, RJ recruited the participants; CD, DP, RJ acquired the MRI data; AA, AC, RJ performed the analyses. All the authors contributed to the manuscript writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Amad.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amad, A., Cachia, A., Gorwood, P. et al. The multimodal connectivity of the hippocampal complex in auditory and visual hallucinations. Mol Psychiatry 19, 184–191 (2014). https://doi.org/10.1038/mp.2012.181

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.181

Keywords

This article is cited by

Search

Quick links