Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epigenetic modulation of chronic anxiety and pain by histone deacetylation

Abstract

Prolonged exposure of the central amygdala (CeA) to elevated corticosteroids (CORT) facilitates long-term anxiety and pain through activation of glucocorticoid receptors (GRs) and corticotropin-releasing factor (CRF). However, the mechanisms maintaining these responses are unknown. Since chronic phenotypes can be sustained by epigenetic mechanisms, including histone modifications such as deacetylation, we tested the hypothesis that histone deacetylation contributes to the maintenance of chronic anxiety and pain induced by prolonged exposure of the CeA to CORT. We found that bilateral infusions of a histone deacetylase inhibitor into the CeA attenuated anxiety-like behavior as well as somatic and visceral hypersensitivity resulting from elevated CORT exposure. Moreover, we delineated a novel pathway through which histone deacetylation could contribute to CORT regulation of GR and subsequent CRF expression in the CeA. Specifically, deacetylation of histone 3 at lysine 9 (H3K9), through the coordinated action of the NAD+-dependent protein deacetylase sirtuin-6 (SIRT6) and nuclear factor kappa B (NFκB), sequesters GR expression leading to disinhibition of CRF. Our results indicate that epigenetic programming in the amygdala, specifically histone modifications, is important in the maintenance of chronic anxiety and pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Sapolsky RM, Romero LM, Munck AU . How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 2000; 21: 55–89.

    CAS  PubMed  Google Scholar 

  2. Korte SM . Corticosteroids in relation to fear, anxiety and psychopathology. Neurosci Biobehav Rev 2001; 25: 117–142.

    Article  CAS  PubMed  Google Scholar 

  3. Schulkin J, Morgan MA, Rosen JB . A neuroendocrine mechanism for sustaining fear. Trends Neurosci 2005; 28: 629–635.

    Article  CAS  PubMed  Google Scholar 

  4. Alexander JK, DeVries AC, Kigerl KA, Dahlman JM, Popovich PG . Stress exacerbates neuropathic pain via glucocorticoid and NMDA receptor activation. Brain Behav Immun 2009; 23: 851–860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schulkin J, McEwen BS, Gold PW . Allostasis, amygdala, and anticipatory angst. Neurosci Biobehav Rev 1994; 18: 385–396.

    Article  CAS  PubMed  Google Scholar 

  6. Roozendaal B, McEwen BS, Chattarji S . Stress, memory and the amygdala. Nat Rev Neurosci 2009; 10: 423–433.

    CAS  PubMed  Google Scholar 

  7. Shepard JD, Barron KW, Myers DA . Corticosterone delivery to the amygdala increases corticotropin-releasing factor mRNA in the central amygdaloid nucleus and anxiety-like behavior. Brain Res 2000; 861: 288–295.

    Article  CAS  PubMed  Google Scholar 

  8. Shepard JD, Barron KW, Myers DA . Stereotaxic localization of corticosterone to the amygdala enhances hypothalamo-pituitary-adrenal responses to behavioral stress. Brain Res 2003; 963: 203–213.

    Article  CAS  PubMed  Google Scholar 

  9. Greenwood-Van Meerveld B, Gibson M, Gunter W, Shepard J, Foreman R, Myers D . Stereotaxic delivery of corticosterone to the amygdala modulates colonic sensitivity in rats. Brain Res 2001; 893: 135–142.

    Article  CAS  PubMed  Google Scholar 

  10. Myers B, Dittmeyer K, Greenwood-Van Meerveld B . Involvement of amygdaloid corticosterone in altered visceral and somatic sensation. Behav Brain Res 2007; 181: 163–167.

    Article  CAS  PubMed  Google Scholar 

  11. Korte SM, Korte-Bouws GA, Koob GF, De Kloet ER, Bohus B . Mineralocorticoid and glucocorticoid receptor antagonists in animal models of anxiety. Pharmacol Biochem Behav 1996; 54: 261–267.

    Article  CAS  PubMed  Google Scholar 

  12. Myers B, Greenwood-Van Meerveld B . Corticosteroid receptor-mediated mechanisms in the amygdala regulate anxiety and colonic sensitivity. Am J Physiol Gastrointest Liver Physiol 2007; 292: G1622–G1629.

    Article  CAS  PubMed  Google Scholar 

  13. Cook CJ . Glucocorticoid feedback increases the sensitivity of the limbic system to stress. Physiol. Behav 2002; 75: 455–464.

    Article  CAS  PubMed  Google Scholar 

  14. Cook CJ . Stress induces CRF release in the paraventricular nucleus, and both CRF and GABA release in the amygdala. Physiol Behav 2004; 82: 751–762.

    Article  CAS  PubMed  Google Scholar 

  15. Makino S, Gold PW, Schulkin J . Corticosterone effects on corticotropin-releasing hormone mRNA in the central nucleus of the amygdala and the parvocellular region of the paraventricular nucleus of the hypothalamus. Brain Res 1994; 640: 105–112.

    Article  CAS  PubMed  Google Scholar 

  16. Makino S, Gold PW, Schulkin J . Effects of corticosterone on CRH mRNA and content in the bed nucleus of the stria terminalis; comparison with the effects in the central nucleus of the amygdala and the paraventricular nucleus of the hypothalamus. Brain Res 1994; 657: 141–149.

    Article  CAS  PubMed  Google Scholar 

  17. Cook CJ . Measuring of extracellular cortisol and corticotropin-releasing hormone in the amygdala using immunosensor coupled microdialysis. J Neurosci Methods 2001; 110: 95–101.

    Article  CAS  PubMed  Google Scholar 

  18. Swanson LW, Simmons DM . Differential steroid hormone and neural influences on peptide mRNA levels in CRH cells of the paraventricular nucleus: a hybridization histochemical study in the rat. J Comp Neurol 1989; 285: 413–435.

    Article  CAS  PubMed  Google Scholar 

  19. Watts AG, Sanchez-Watts G . Region-specific regulation of neuropeptide mRNAs in rat limbic forebrain neurones by aldosterone and corticosterone. J Physiol 1995; 484: 721–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thompson BL, Erickson K, Schulkin J, Rosen JB . Corticosterone facilitates retention of contextually conditioned fear and increases CRH mRNA expression in the amygdala. Behav Brain Res 2004; 149: 209–215.

    Article  CAS  PubMed  Google Scholar 

  21. Tran L, Greenwood-Van Meerveld B . Altered expression of glucocorticoid receptor and corticotropin-releasing factor in the central amygdala in response to elevated corticosterone. Behav Brain Res 2012; 234: 380–385.

    Article  CAS  PubMed  Google Scholar 

  22. Liang KC, Melia KR, Miserendino MJ, Falls WA, Campeau S, Davis M . Corticotropin-releasing factor: long-lasting facilitation of the acoustic startle reflex. J Neurosci 1992; 12: 2303–2312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ji G, Neugebauer V . Pro- and anti-nociceptive effects of corticotropin-releasing factor (CRF) in central amygdala neurons are mediated through different receptors. J Neurophysiol 2008; 99: 1201–1212.

    Article  CAS  PubMed  Google Scholar 

  24. Johnson AC, Tran L, Schulkin J, Greenwood-Van Meerveld B . Importance of stress receptor-mediated mechanisms in the amygdala on visceral pain perception in an intrinsically anxious rat. Neurogastroenterol Motil 2012; 24: 479–486, e219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Myers B, Greenwood-Van Meerveld B . Elevated corticosterone in the amygdala leads to persistent increases in anxiety-like behavior and pain sensitivity. Behav Brain Res 2010; 214: 465–469.

    Article  CAS  PubMed  Google Scholar 

  26. Jirtle RL, Skinner MK . Environmental epigenomics and disease susceptibility. Nat Rev Genet 2007; 8: 253–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weaver IC, Cervoni N, Champagne FA, D'Alessio AC, Sharma S, Seckl JR et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004; 7: 847–854.

    Article  CAS  PubMed  Google Scholar 

  28. Szyf M, McGowan P, Meaney MJ . The social environment and the epigenome. Environ Mol Mutagen 2008; 49: 46–60.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang TY, Labonte B, Wen XL, Turecki G, Meaney MJ . Epigenetic mechanisms for the early environmental regulation of hippocampal glucocorticoid receptor gene expression in rodents and humans. Neuropsychopharmacology 2013; 38: 111–123.

    Article  PubMed  Google Scholar 

  30. Stevens A, Begum G, Cook A, Connor K, Rumball C, Oliver M et al. Epigenetic changes in the hypothalamic proopiomelanocortin and glucocorticoid receptor genes in the ovine fetus after periconceptional undernutrition. Endocrinology 2010; 151: 3652–3664.

    Article  CAS  PubMed  Google Scholar 

  31. Schwer B, Schumacher B, Lombard DB, Xiao C, Kurtev MV, Gao J et al. Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity. Proc Natl Acad Sci USA 2010; 107: 21790–21794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 2009; 136: 62–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 2008; 452: 492–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tran L, Greenwood-Van Meerveld B . Lateralized amygdala activation: importance in the regulation of anxiety and pain behavior. Physiol Behav 2012; 105: 371–375.

    Article  CAS  PubMed  Google Scholar 

  35. Tran L, Chaloner A, Sawalha AH, Greenwood-Van Meerveld B . Importance of epigenetic mechanisms in stress-induced visceral pain. Psychoneuroendocrinology 2012; 38: 898–906.

    Article  PubMed  Google Scholar 

  36. Tran L, Wiskur B, Greenwood-Van Meerveld B . The role of the anteriolateral bed nucleus of the stria terminalis in stress-induced nociception. Am J Physiol Gastrointest Liver Physiol 2012; 302: G1301–G1309.

    Article  CAS  PubMed  Google Scholar 

  37. Paxinos G, Watson CS The Rat Brain in Stereotaxic Coordinates. Elsevier Academic Press: Amsterdam, 2007.

    Google Scholar 

  38. Gosselin RD, O'Connor RM, Tramullas M, Julio-Pieper M, Dinan TG, Cryan JF . Riluzole normalizes early-life stress-induced visceral hypersensitivity in rats: role of spinal glutamate reuptake mechanisms. Gastroenterology 2010; 138: 2418–2425.

    Article  CAS  PubMed  Google Scholar 

  39. Yao M, Schulkin J, Denver RJ . Evolutionarily conserved glucocorticoid regulation of corticotropin-releasing factor expression. Endocrinology 2008; 149: 2352–2360.

    Article  CAS  PubMed  Google Scholar 

  40. Donica CL, Ramirez VI, Awwad HO, Zaveri NT, Toll L, Standifer KM . Orphanin FQ/nociceptin activates nuclear factor kappa B. J. Neuroimmune Pharmacol 2011; 6: 617–625.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004; 23: 2369–2380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen T, Lee MJ, Kim YS, Lee S, Kummar S, Gutierrez M et al. Pharmacodynamic assessment of histone deacetylase inhibitors: infrared vibrational spectroscopic imaging of protein acetylation. Anal Chem 2008; 80: 6390–6396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Adam E, Quivy V, Bex F, Chariot A, Collette Y, Vanhulle C et al. Potentiation of tumor necrosis factor-induced NF-kappa B activation by deacetylase inhibitors is associated with a delayed cytoplasmic reappearance of I kappa B alpha. Mol Cell Biol 2003; 23: 6200–6209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takada Y, Gillenwater A, Ichikawa H, Aggarwal BB . Suberoylanilide hydroxamic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis by suppressing nuclear factor-kappaB activation. J Biol Chem 2006; 281: 5612–5622.

    Article  CAS  PubMed  Google Scholar 

  45. Choo QY, Ho PC, Tanaka Y, Lin HS . Histone deacetylase inhibitors MS-275 and SAHA induced growth arrest and suppressed lipopolysaccharide-stimulated NF-kappaB p65 nuclear accumulation in human rheumatoid arthritis synovial fibroblastic E11 cells. Rheumatology (Oxford) 2010; 49: 1447–1460.

    Article  CAS  Google Scholar 

  46. Galimberti S, Canestraro M, Maffei R, Marasca R, Guerrini F, Piaggi S et al. Vorinostat interferes with Wnt and NF-kappaB pathways in the M-07e cell line. Leukemia 2009; 23: 1935–1938.

    Article  CAS  PubMed  Google Scholar 

  47. Zhong HM, Ding QH, Chen WP, Luo RB . Vorinostat, a HDAC inhibitor, showed anti-osteoarthritic activities through inhibition of iNOS and MMP expression, p38 and ERK phosphorylation and blocking NF-kappaB nuclear translocation. Int Immunopharmacol 2013; 17: 329–335.

    Article  CAS  PubMed  Google Scholar 

  48. Pandey SC, Ugale R, Zhang H, Tang L, Prakash A . Brain chromatin remodeling: a novel mechanism of alcoholism. J Neurosci 2008; 28: 3729–3737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kadonaga JT . Eukaryotic transcription: an interlaced network of transcription factors and chromatin-modifying machines. Cell 1998; 92: 307–313.

    Article  CAS  PubMed  Google Scholar 

  50. Roth SY, Denu JM, Allis CD . Histone acetyltransferases. Annu Rev Biochem 2001; 70: 81–120.

    Article  CAS  PubMed  Google Scholar 

  51. Malkoski SP, Handanos CM, Dorin RI . Localization of a negative glucocorticoid response element of the human corticotropin releasing hormone gene. Mol Cell Endocrinol 1997; 127: 189–199.

    Article  CAS  PubMed  Google Scholar 

  52. Yao M, Denver RJ . Regulation of vertebrate corticotropin-releasing factor genes. Gen Comp Endocrinol 2007; 153: 200–216.

    Article  CAS  PubMed  Google Scholar 

  53. Herrlich P . Cross-talk between glucocorticoid receptor and AP-1. Oncogene 2001; 20: 2465–2475.

    Article  CAS  PubMed  Google Scholar 

  54. Yang-Yen HF, Chambard JC, Sun YL, Smeal T, Schmidt TJ, Drouin J et al. Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 1990; 62: 1205–1215.

    Article  CAS  PubMed  Google Scholar 

  55. De Bosscher K, Vanden Berghe W, Haegeman G . The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for gene repression. Endocr Rev 2003; 24: 488–522.

    Article  CAS  PubMed  Google Scholar 

  56. Strahle U, Schmid W, Schutz G . Synergistic action of the glucocorticoid receptor with transcription factors. EMBO J 1988; 7: 3389–3395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Biddie SC, John S, Sabo PJ, Thurman RE, Johnson TA, Schiltz RL et al. Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol Cell 2011; 43: 145–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tuckermann JP, Reichardt HM, Arribas R, Richter KH, Schütz G, Angel P . The DNA binding-independent function of the glucocorticoid receptor mediates repression of AP-1-dependent genes in skin. J Cell Biol 1999; 147: 1365–1370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kerppola TK, Luk D, Curran T . Fos is a preferential target of glucocorticoid receptor inhibition of AP-1 activity in vitro. Mol Cell Biol 1993; 13: 3782–3791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schule R, Rangarajan P, Kliewer S, Ransone LJ, Bolado J, Yang N et al. Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor. Cell 1990; 62: 1217–1226.

    Article  CAS  PubMed  Google Scholar 

  61. Kyrylenko S, Kyrylenko O, Suuronen T, Salminen A . Differential regulation of the Sir2 histone deacetylase gene family by inhibitors of class I and II histone deacetylases. Cell Mol Life Sci 2003; 60: 1990–1997.

    Article  CAS  PubMed  Google Scholar 

  62. Zhong X, Zhang H, Zhao Y, Sun Q, Hu Y, Peng H et al. The rice NAD(+)-dependent histone deacetylase OsSRT1 targets preferentially to stress- and metabolism-related genes and transposable elements. PLoS ONE 2013; 8: e66807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bierhaus A, Humpert PM, Nawroth PP . NF-kappaB as a molecular link between psychosocial stress and organ dysfunction. Pediatr Nephrol 2004; 19: 1189–1191.

    Article  CAS  PubMed  Google Scholar 

  64. Webster JC, Oakley RH, Jewell CM, Cidlowski JA . Proinflammatory cytokines regulate human glucocorticoid receptor gene expression and lead to the accumulation of the dominant negative beta isoform: a mechanism for the generation of glucocorticoid resistance. Proc Natl Acad Sci USA 2001; 98: 6865–6870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

BG-VM would like to acknowledge the generous funding support for her Research Career Scientist and Merit Review Awards from the Department of Veterans Affairs. We would also like to acknowledge the Oklahoma Medical Research Foundation Imaging Core for their assistance and use of their confocal microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Greenwood-Van Meerveld.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, L., Schulkin, J., Ligon, C. et al. Epigenetic modulation of chronic anxiety and pain by histone deacetylation. Mol Psychiatry 20, 1219–1231 (2015). https://doi.org/10.1038/mp.2014.122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.122

This article is cited by

Search

Quick links