Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ovarian steroids regulate gene expression related to DNA repair and neurodegenerative diseases in serotonin neurons of macaques

Subjects

Abstract

Depression often accompanies the perimenopausal transition and it often precedes overt symptomology in common neurodegenerative diseases (NDDs, such as Alzheimer’s, Parkinson’s, Huntington, amyotrophic lateral sclerosis). Serotonin dysfunction is frequently found in the different etiologies of depression. We have shown that ovariectomized (Ovx) monkeys treated with estradiol (E) for 28 days supplemented with placebo or progesterone (P) on days 14–28 had reduced DNA fragmentation in serotonin neurons of the dorsal raphe nucleus, and long-term Ovx monkeys had fewer serotonin neurons than intact controls. We questioned the effect of E alone or E+P (estradiol supplemented with progesterone) on gene expression related to DNA repair, protein folding (chaperones), the ubiquitin-proteosome, axon transport and NDD-specific genes in serotonin neurons. Ovx macaques were treated with placebo, E or E+P (n=3 per group) for 1 month. Serotonin neurons were laser captured and subjected to microarray analysis and quantitative real-time PCR (qRT-PCR). Increases were confirmed with qRT-PCR in five genes that code for proteins involved in repair of strand breaks and nucleotide excision. NBN1, PCNA (proliferating nuclear antigen), GADD45A (DNA damage-inducible), RAD23A (DNA damage recognition) and GTF2H5 (gene transcription factor 2H5) significantly increased with E or E+P treatment (all analysis of variance (ANOVA), P<0.01). Chaperone genes HSP70 (heat-shock protein 70), HSP60 and HSP27 significantly increased with E or E+P treatment (all ANOVA, P<0.05). HSP90 showed a similar trend. Ubiquinase coding genes UBEA5, UBE2D3 and UBE3A (Parkin) increased with E or E+P (all ANOVA, P<0.003). Transport-related genes coding kinesin, dynein and dynactin increased with E or E+P treatment (all ANOVA, P<0.03). SCNA (α-synuclein) and ADAM10 (α-secretase) increased (both ANOVA, P<0.02) but PSEN1 (presenilin1) decreased (ANOVA, P<0.02) with treatment. APP decreased 10-fold with E or E+P administration. Newman–Keuls post hoc comparisons indicated variation in the response to E alone versus E+P across the different genes. In summary, E or E+P increased gene expression for DNA repair mechanisms in serotonin neurons, thereby rendering them less vulnerable to stress-induced DNA fragmentation. In addition, E or E+P regulated four genes encoding proteins that are often misfolded or malfunctioning in neuronal populations subserving overt NDD symptomology. The expression and regulation of these genes in serotonergic neurons invites speculation that they may mediate an underlying disease process in NDDs, which in turn may be ameliorated or delayed with timely hormone therapy in women.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Bethea CL, Lu NZ, Gundlah C, Streicher JM . Diverse actions of ovarian steroids in the serotonin neural system. Front Neuroendocrinol 2002; 23: 41–100.

    Article  CAS  PubMed  Google Scholar 

  2. Coleman K, Robertson ND, Bethea CL . Long-term ovariectomy alters social and anxious behaviors in semi-free ranging Japanese macaques. Behav Brain Res 2011; 225: 317–327.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kugaya A, Epperson CN, Zoghbi S, van Dyck CH, Hou Y, Fujita M et al. Increase in prefrontal cortex serotonin 2A receptors following estrogen treatment in postmenopausal women. Am J Psychiatry 2003; 160: 1522–1524.

    Article  PubMed  Google Scholar 

  4. Soares CN, Almeida OP, Joffe H, Cohen LS . Efficacy of estradiol for the treatment of depressive disorders in perimenopausal women: a double-blind, randomized, placebo-controlled trial. Arch Gen Psychiatry 2001; 58: 529–534.

    Article  CAS  PubMed  Google Scholar 

  5. Heikkinen J, Vaheri R, Timonen U . A 10-year follow-up of postmenopausal women on long-term continuous combined hormone replacement therapy: update of safety and quality-of-life findings. J Br Menopause Soc 2006; 12: 115–125.

    Article  PubMed  Google Scholar 

  6. Steinberg EM, Rubinow DR, Bartko JJ, Fortinsky PM, Haq N, Thompson K et al. A cross-sectional evaluation of perimenopausal depression. J Clin Psychiatry 2008; 69: 973–980.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lima FB, Bethea CL . Ovarian steroids decrease DNA fragmentation in the serotonin neurons of non-injured rhesus macaques. Mol Psychiatry 2010; 15: 657–668.

    Article  CAS  PubMed  Google Scholar 

  8. Bethea CL, Reddy AP . Effect of ovarian hormones on survival genes in laser captured serotonin neurons from macaques. J Neurochem 2008; 105: 1129–1143.

    Article  CAS  PubMed  Google Scholar 

  9. Tokuyama Y, Reddy AP, Bethea CL . Neuroprotective actions of ovarian hormones without insult in the raphe region of rhesus macaques. Neuroscience 2008; 154: 720–731.

    Article  CAS  PubMed  Google Scholar 

  10. Miramar MD, Costantini P, Ravagnan L, Saraiva LM, Haouzi D, Brothers G et al. NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem 2001; 276: 16391–16398.

    Article  CAS  PubMed  Google Scholar 

  11. Krantic S, Mechawar N, Reix S, Quirion R . Apoptosis-inducing factor: a matter of neuron life and death. Prog Neurobiol 2007; 81: 179–196.

    Article  CAS  PubMed  Google Scholar 

  12. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002; 416: 507–511.

    Article  CAS  PubMed  Google Scholar 

  13. Mullan M, Crawford F . The molecular genetics of Alzheimer's disease. Mol Neurobiol 1994; 9: 15–22.

    Article  CAS  PubMed  Google Scholar 

  14. Dawson TM, Dawson VL . Molecular pathways of neurodegeneration in Parkinson's disease. Science 2003; 302: 819–822.

    Article  CAS  PubMed  Google Scholar 

  15. Bethea CL . MPA: medroxy-progesterone acetate contributes to much poor advice for women. Endocrinology 2011; 152: 343–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bethea CL, Pau FK, Fox S, Hess DL, Berga SL, Cameron JL . Sensitivity to stress-induced reproductive dysfunction linked to activity of the serotonin system. Fertil Steril 2005; 83: 148–155.

    Article  CAS  PubMed  Google Scholar 

  17. Brenner RM, Slayden OD . Cyclic changes in the primate oviduct and endometrium. In: Knobil E, Neill JD (eds). The Physiology of Reproduction, 2nd edn. Raven Press: New York, NY, USA, pp 541–569, 1994.

    Google Scholar 

  18. Bethea C, Reddy A . Effect of ovarian hormones on survival genes in laser captured serotonin neurons from macaques. J Neurochem 2008; 105: 1129–1143.

    Article  CAS  PubMed  Google Scholar 

  19. Bethea CL, Reddy AP . Effect of ovarian hormones on genes promoting dendritic spines in laser-captured serotonin neurons from macaques. Mol Psychiatry 2010; 15: 1034–1044.

    Article  CAS  PubMed  Google Scholar 

  20. Bethea CL, Reddy AP . Ovarian steroids increase glutamatergic related gene expression in serotonin neurons of macaques. Mol Cell Neurosci 2012; 49: 251–262.

    Article  CAS  PubMed  Google Scholar 

  21. Bethea CL, Reddy AP . Effect of ovarian steroids on gene expression related to synapse assembly in serotonin neurons of macaques. J Neurosci Res 2012; 90: 1324–1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dalman MR, Deeter A, Nimishakavi G, Duan ZH . Fold change and p-value cutoffs significantly alter microarray interpretations. BMC Bioinform 2012; 13 (Suppl 2): S11.

    Article  Google Scholar 

  23. Henderson VW . Estrogen, cognition, and a woman's risk of Alzheimer's disease. Am J Med 1997; 103: 11S–18SS.

    Article  CAS  PubMed  Google Scholar 

  24. Hotchkiss J, Knobil K . The menstrual cycle and its neuroendocrine control. In: Knobil E, Neill JD (eds). The Physiology of Reproduction, 2nd edn. Raven Press: New York, NY, USA, pp 711–750, 1994.

    Google Scholar 

  25. Kessing LV . Depression and the risk for dementia. Curr Opin Psychiatry 2012; 25: 457–461.

    Article  PubMed  Google Scholar 

  26. Hidasi Z, Salacz P, Csibri E . Depression in neuropsychiatric diseases. Ideggyogyaszati szemle 2012; 65: 6–15.

    PubMed  Google Scholar 

  27. Gallarda T . Alzheimer's disease and depression. L'Encephale 1999; 25: 14–17; discussion 8.

    PubMed  Google Scholar 

  28. Vajda FJ, Solinas C . Current approaches to management of depression in Parkinson's Disease. J Clin Neurosci 2005; 12: 739–743.

    Article  CAS  PubMed  Google Scholar 

  29. Berg D . Biomarkers for the early detection of Parkinson's and Alzheimer's disease. Neurodegener Dis 2008; 5: 133–136.

    Article  PubMed  Google Scholar 

  30. Politis M, Loane C . Serotonergic dysfunction in Parkinson's disease and its relevance to disability. Scientific World J 2011; 11: 1726–1734.

    Article  CAS  Google Scholar 

  31. Banerjee S, Hellier J, Romeo R, Dewey M, Knapp M, Ballard C et al. Study of the use of antidepressants for depression in dementia: the HTA-SADD trial—a multicentre, randomised, double-blind, placebo-controlled trial of the clinical effectiveness and cost-effectiveness of sertraline and mirtazapine. Health Technol Assess 2013; 17: 1–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leong C . Antidepressants for depression in patients with dementia: a review of the literature. Consultant Pharmacist 2014; 29: 254–263.

    Article  Google Scholar 

  33. Chen CP, Eastwood SL, Hope T, McDonald B, Francis PT, Esiri MM . Immunocytochemical study of the dorsal and median raphe nuclei in patients with Alzheimer's disease prospectively assessed for behavioural changes. Neuropathol Appl Neurobiol 2000; 26: 347–355.

    Article  CAS  PubMed  Google Scholar 

  34. Politis M, Wu K, Loane C, Quinn NP, Brooks DJ, Oertel WH et al. Serotonin neuron loss and nonmotor symptoms continue in Parkinson's patients treated with dopamine grafts. Sci Transl Med 2012; 4: 128ra41.

    Article  PubMed  Google Scholar 

  35. Yamamoto T, Hirano A . Nucleus raphe dorsalis in Alzheimer's disease: neurofibrillary tangles and loss of large neurons. Ann Neurol 1985; 17: 573–577.

    Article  CAS  PubMed  Google Scholar 

  36. Yamamoto T, Hirano A . Nucleus raphe dorsalis in parkinsonism–dementia complex of Guam. Acta Neuropathol 1985; 67: 296–299.

    Article  CAS  PubMed  Google Scholar 

  37. Myint AM, Kim YK . Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med Hypotheses 2003; 61: 519–525.

    Article  CAS  PubMed  Google Scholar 

  38. Gardner A, Boles RG . Beyond the serotonin hypothesis: mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35: 730–743.

    Article  CAS  PubMed  Google Scholar 

  39. Rodriguez JJ, Noristani HN, Verkhratsky A . The serotonergic system in ageing and Alzheimer's disease. Prog Neurobiol 2012; 99: 15–41.

    Article  CAS  PubMed  Google Scholar 

  40. Tsang KL, Ho SL, Lo SK . Estrogen improves motor disability in parkinsonian postmenopausal women with motor fluctuations. Neurology 2000; 54: 2292–2298.

    Article  CAS  PubMed  Google Scholar 

  41. Henderson VW . Estrogen-containing hormone therapy and Alzheimer's disease risk: understanding discrepant inferences from observational and experimental research. Neuroscience 2006; 138: 1031–1039.

    Article  CAS  PubMed  Google Scholar 

  42. Simpkins JW, Green PS, Gridley KE, Singh M, de Fiebre NC, Rajakumar G . Role of estrogen replacement therapy in memory enhancement and the prevention of neuronal loss associated with Alzheimer's disease. Am J Med 1997; 103: 19S–25S.

    Article  CAS  PubMed  Google Scholar 

  43. Petanceska SS, Nagy V, Frail D, Gandy S . Ovariectomy and 17beta-estradiol modulate the levels of Alzheimer's amyloid beta peptides in brain. Neurology 2000; 54: 2212–2217.

    Article  CAS  PubMed  Google Scholar 

  44. Bourque M, Dluzen DE, Di Paolo T . Signaling pathways mediating the neuroprotective effects of sex steroids and SERMs in Parkinson's disease. Front Neuroendocrinol. 2012; 33: 169–178.

    Article  CAS  PubMed  Google Scholar 

  45. Tang MX, Jacobs D, Stern Y, Marder K, Schofield P, Gurland B et al. Effect of oestrogen during menopause on risk and age at onset of Alzheimer's disease. Lancet 1996; 348: 429–432.

    Article  CAS  PubMed  Google Scholar 

  46. Imtiaz B, Tuppurainen M, Tiihonen M, Kivipelto M, Soininen H, Hartikainen S et al. Oophorectomy, hysterectomy, and risk of Alzheimer's disease: a Nationwide Case–Control Study. J Alzh Dis 2014; 42: 575–581.

    Article  Google Scholar 

  47. Tejani-Butt SM, Yang J, Pawlyk AC . Altered serotonin transporter sites in Alzheimer's disease raphe and hippocampus. NeuroReport 1995; 6: 1207–1210.

    Article  CAS  PubMed  Google Scholar 

  48. Benninghoff J, Schmitt A, Mossner R, Kesch K-P . When cells become depressed: focus on neural stems cells in novel treatment strategies against depression. J Neural Transm 2002; 109: 947–962.

    Article  CAS  PubMed  Google Scholar 

  49. Manji HK, Duman RS . Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol Bull 2001; 35: 5–49.

    CAS  PubMed  Google Scholar 

  50. Alfonso J, Pollevick GD, Van Der Hart MG, Flugge G, Fuchs E, Frasch AC . Identification of genes regulated by chronic psychosocial stress and antidepressant treatment in the hippocampus. Eur J Neurosci 2004; 19: 659–666.

    Article  PubMed  Google Scholar 

  51. Bethea CL, Smith AW, Centeno ML, Reddy AP . Long-term ovariectomy decreases serotonin neuron number and gene expression in free ranging macaques. Neuroscience 2012; 49: 251–262.

    CAS  Google Scholar 

  52. Lima FB, Centeno ML, Costa ME, Reddy AP, Cameron JL, Bethea CL . Stress sensitive female macaques have decreased fifth Ewing variant (Fev) and serotonin-related gene expression that is not reversed by citalopram. Neuroscience 2009; 164: 676–691.

    Article  CAS  PubMed  Google Scholar 

  53. Dantuma NP, Heinen C, Hoogstraten D . The ubiquitin receptor Rad23: at the crossroads of nucleotide excision repair and proteasomal degradation. DNA Rep (Amst) 2009; 8: 449–460.

    Article  CAS  Google Scholar 

  54. Nouspikel T . DNA repair in mammalian cells: nucleotide excision repair: variations on versatility. Cell Mol Life Sci 2009; 66: 994–1009.

    Article  CAS  PubMed  Google Scholar 

  55. Nouspikel T, Hanawalt PC . Terminally differentiated human neurons repair transcribed genes but display attenuated global DNA repair and modulation of repair gene expression. Mol Cell Biol 2000; 20: 1562–1570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hanawalt PC, Spivak G . Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 2008; 9: 958–970.

    Article  CAS  PubMed  Google Scholar 

  57. Carney JP . Chromosomal breakage syndromes. Curr Opin Immunol 1999; 11: 443–447.

    Article  CAS  PubMed  Google Scholar 

  58. Zhu Q, Chang Y, Yang J, Wei Q . Post-translational modifications of proliferating cell nuclear antigen: a key signal integrator for DNA damage response (Review). Oncol Lett 2014; 7: 1363–1369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cao A, Zhang C . Sex-specific effects of androgen and estrogen on proliferation of the embryonic chicken hypothalamic neurons. Endocrine 2007; 31: 161–166.

    Article  CAS  PubMed  Google Scholar 

  60. Giglia-Mari G, Coin F, Ranish JA, Hoogstraten D, Theil A, Wijgers N et al. A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat Genet 2004; 36: 714–719.

    Article  CAS  PubMed  Google Scholar 

  61. Sultan FA, Sweatt JD . The role of the Gadd45 family in the nervous system: a focus on neurodevelopment, neuronal injury, and cognitive neuroepigenetics. Adv Exp Med Biol 2013; 793: 81–119.

    Article  CAS  PubMed  Google Scholar 

  62. Schafer A . Gadd45 proteins: key players of repair-mediated DNA demethylation. Adv Exp Med Biol 2013; 793: 35–50.

    Article  CAS  PubMed  Google Scholar 

  63. Muller P, Ruckova E, Halada P, Coates PJ, Hrstka R, Lane DP et al. C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances. Oncogene 2013; 32: 3101–3110.

    Article  CAS  PubMed  Google Scholar 

  64. Saibil H . Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 2013; 14: 630–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dimant H, Ebrahimi-Fakhari D, McLean PJ . Molecular chaperones and co-chaperones in Parkinson disease. Neuroscientist 2012; 18: 589–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Head MW, Goldman JE . Small heat shock proteins, the cytoskeleton, and inclusion body formation. Neuropathol Appl Neurobiol 2000; 26: 304–312.

    Article  CAS  PubMed  Google Scholar 

  67. Olazabal UE, Pfaff DW, Mobbs CV . Sex differences in the regulation of heat shock protein 70 kDa and 90 kDa in the rat ventromedial hypothalamus by estrogen. Brain Res 1992; 596: 311–314.

    Article  CAS  PubMed  Google Scholar 

  68. Chambraud B, Berry M, Redeuilh G, Chambon P, Baulieu EE . Several regions of human estrogen receptor are involved in the formation of receptor-heat shock protein 90 complexes. J Biol Chem 1990; 265: 20686–20691.

    CAS  PubMed  Google Scholar 

  69. Berke SJ, Paulson HL . Protein aggregation and the ubiquitin proteasome pathway: gaining the UPPer hand on neurodegeneration. Curr Opin Genet Dev 2003; 13: 253–261.

    Article  CAS  PubMed  Google Scholar 

  70. Ross CA, Pickart CM . The ubiquitin–proteasome pathway in Parkinson's disease and other neurodegenerative diseases. Trends Cell Biol 2004; 14: 703–711.

    Article  CAS  PubMed  Google Scholar 

  71. Hol EM, Fischer DF, Ovaa H, Scheper W . Ubiquitin proteasome system as a pharmacological target in neurodegeneration. Expert Rev Neurother 2006; 6: 1337–1347.

    Article  CAS  PubMed  Google Scholar 

  72. Weissman AM . Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2001; 2: 169–178.

    Article  CAS  PubMed  Google Scholar 

  73. Walden H, Martinez-Torres RJ . Regulation of Parkin E3 ubiquitin ligase activity. Cell Mol Life Sci 2012; 69: 3053–3067.

    Article  CAS  PubMed  Google Scholar 

  74. Chevalier-Larsen E, Holzbaur EL . Axonal transport and neurodegenerative disease. Biochim Biophys Acta 2006; 1762: 1094–1108.

    Article  CAS  PubMed  Google Scholar 

  75. Duncan JE, Goldstein LS . The genetics of axonal transport and axonal transport disorders. PLoS Genet 2006; 2: e124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Eschbach J, Dupuis L . Cytoplasmic dynein in neurodegeneration. Pharmacol Ther 2011; 130: 348–363.

    Article  CAS  PubMed  Google Scholar 

  77. Bethea CL, Coleman K, Phu K, Reddy AP, Phu A . Relationships between androgens, serotonin gene expression and innervation in male macaques. Neuroscience 2014; 274: 341–356.

    Article  CAS  PubMed  Google Scholar 

  78. Henry JP, Sagne C, Bedet C, Gasnier B . The vesicular monoamine transporter: from chromaffin granule to brain. Neurochem Int 1998; 32: 227–246.

    Article  CAS  PubMed  Google Scholar 

  79. Tsuno N, Homma A . What is the association between depression and Alzheimer's disease? Expert Rev Neurother 2009; 9: 1667–1676.

    Article  PubMed  Google Scholar 

  80. Anukulthanakorn K, Malaivijitnond S, Kitahashi T, Jaroenporn S, Parhar I . Molecular events during the induction of neurodegeneration and memory loss in estrogen-deficient rats. Gen Comp Endocrinol 2013; 181: 316–323.

    Article  CAS  PubMed  Google Scholar 

  81. Gandy S, Petanceska S . Regulation of Alzheimer beta-amyloid precursor trafficking and metabolism. Biochim Biophys Acta 2000; 1502: 44–52.

    Article  CAS  PubMed  Google Scholar 

  82. Zheng H, Koo EH . The amyloid precursor protein: beyond amyloid. Mol Neurodegen 2006; 3 1-5.

  83. Szego EM, Csorba A, Janaky T, Kekesi KA, Abraham IM, Morotz GM et al. Effects of estrogen on beta-amyloid-induced cholinergic cell death in the nucleus basalis magnocellularis. Neuroendocrinology 2011; 93: 90–105.

    Article  CAS  PubMed  Google Scholar 

  84. Camacho-Arroyo I, Gonzalez-Arenas A, Espinosa-Raya J, Pina-Medina AG, Picazo O . Short- and long-term treatment with estradiol or progesterone modifies the expression of GFAP, MAP2 and Tau in prefrontal cortex and hippocampus. Life Sci 2011; 89: 123–128.

    Article  CAS  PubMed  Google Scholar 

  85. Acx H, Chavez-Gutierrez L, Serneels L, Lismont S, Benurwar M, Elad N et al. Signature amyloid beta profiles are produced by different gamma-secretase complexes. J Biol Chem 2014; 289: 4346–4355.

    Article  CAS  PubMed  Google Scholar 

  86. Zheng H, Xu H, Uljon SN, Gross R, Hardy K, Gaynor J et al. Modulation of A(beta) peptides by estrogen in mouse models. J Neurochem 2002; 80: 191–196.

    Article  CAS  PubMed  Google Scholar 

  87. Nord LC, Sundqvist J, Andersson E, Fried G . Analysis of oestrogen regulation of alpha-, beta- and gamma-secretase gene and protein expression in cultured human neuronal and glial cells. Neurodegener Dis 2010; 7: 349–364.

    Article  CAS  PubMed  Google Scholar 

  88. Bethea CL . Colocalization of progestin receptors with serotonin in raphe neurons of macaque. Neuroendocrinology 1993; 57: 1–6.

    Article  CAS  PubMed  Google Scholar 

  89. Gundlah C, Lu NZ, Mirkes SJ, Bethea CL . Estrogen receptor beta (ERb) mRNA and protein in serotonin neurons of macaques. Mol Brain Res 2001; 91: 14–22.

    Article  CAS  PubMed  Google Scholar 

  90. Cerillo G, Rees A, Manchanda N, Reilly C, Brogan I, White A et al, The oestrogen receptor regulates NFkappaB and AP-1 activity in a cell-specific manner. J Steroid Biochem Mol Biol 1998; 67: 79–88.

    Article  CAS  PubMed  Google Scholar 

  91. Meyer ME, Gronemeyer H, Turcotte B, Bocquel MT, Tasset D, Chambon P . Steroid hormone receptors compete for factors that mediate their enhancer function. Cell 1989; 57: 433–442.

    Article  CAS  PubMed  Google Scholar 

  92. Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK et al. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 1997; 387: 677–684.

    Article  CAS  PubMed  Google Scholar 

  93. Charlier TD, Ball GF, Balthazart J . Inhibition of steroid receptor coactivator-1 blocks estrogen and androgen action on male sex behavior and associated brain plasticity. J Neurosci 2005; 25: 906–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Johnson AB, O'Malley BW . Steroid receptor coactivators 1, 2, and 3: critical regulators of nuclear receptor activity and steroid receptor modulator (SRM)-based cancer therapy. Mol Cell Endocrinol 2012; 348: 430–439.

    Article  CAS  PubMed  Google Scholar 

  95. Heessen S, Masucci MG, Dantuma NP . The UBA2 domain functions as an intrinsic stabilization signal that protects Rad23 from proteasomal degradation. Mol Cell 2005; 18: 225–235.

    Article  CAS  PubMed  Google Scholar 

  96. Gillette TG, Yu S, Zhou Z, Waters R, Johnston SA, Reed SH . Distinct functions of the ubiquitin-proteasome pathway influence nucleotide excision repair. EMBO J 2006; 25: 2529–2538.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Franklin TB, Krueger-Naug AM, Clarke DB, Arrigo AP, Currie RW . The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. Int J Hypertherm 2005; 21: 379–392.

    Article  CAS  Google Scholar 

  98. Latchman DS . HSP27 and cell survival in neurones. Int J Hypertherm 2005; 21: 393–402.

    Article  CAS  Google Scholar 

  99. Kotoglou P, Kalaitzakis A, Vezyraki P, Tzavaras T, Michalis LK, Dantzer F et al. Hsp70 translocates to the nuclei and nucleoli, binds to XRCC1 and PARP-1, and protects HeLa cells from single-strand DNA breaks. Cell Stress Chaperones 2009; 14: 391–406.

    Article  CAS  PubMed  Google Scholar 

  100. Niu P, Liu L, Gong Z, Tan H, Wang F, Yuan J et al. Overexpressed heat shock protein 70 protects cells against DNA damage caused by ultraviolet C in a dose-dependent manner. Cell Stress Chaperones 2006; 11: 162–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Quanz M, Herbette A, Sayarath M, de Koning L, Dubois T, Sun JS, Dutreix M . Heat shock protein 90alpha (Hsp90alpha) is phosphorylated in response to DNA damage and accumulates in repair foci. J Biol Chem 2012; 287: 8803–8815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Daturpalli S, Waudby CA, Meehan S, Jackson SE . Hsp90 inhibits alpha-synuclein aggregation by interacting with soluble oligomers. J Mol Biol 2013; 425: 4614–4628.

    Article  CAS  PubMed  Google Scholar 

  103. Pratt WB, Galigniana MD, Harrell JM, DeFranco DB . Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 2004; 16: 857–872.

    Article  CAS  PubMed  Google Scholar 

  104. Ekstrand MI, Nectow AR, Knight ZA, Latcha KN, Pomeranz LE, Friedman JM . Molecular profiling of neurons based on connectivity. Cell 2014; 157: 1230–1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shughrue PJ, Lane MV, Merchenthaler I . Comparative distribution of estrogen receptor-a and -b mRNA in the rat central nervous system. J Comp Neurol 1997; 388: 507–525.

    Article  CAS  PubMed  Google Scholar 

  106. Schmidt PJ, Rubinow DR . Sex hormones and mood in the perimenopause. Ann NY Acad Sci 2009; 1179: 70–85.

    Article  CAS  PubMed  Google Scholar 

  107. Taler M, Miron O, Gil-Ad I, Weizman A . Neuroprotective and procognitive effects of sertraline: in vitro and in vivo studies. Neurosci Lett 2013; 550: 93–97.

    Article  CAS  PubMed  Google Scholar 

  108. Schneider LS, Small GW, Hamilton SH, Bystritsky A, Nemeroff CB, Meyers BS . Estrogen replacement and response to fluoxetine in a multicenter geriatric depression trial. Fluoxetine Collaborative Study Group. Am J Geriatr Psychiatry 1997; 5: 97–106.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are deeply grateful to the dedicated staff of the Division of Animal Resources including the staff of the Departments of Surgery and Pathology for their expertise and helpfulness in all aspects of monkey management. The staff of the OHSU Gene Microarray Shared Resource was essential for this study. This study was supported by NIH grants (MH62677 to CLB), U54 contraceptive Center Grant (HD 18185) and P51 OD 011092 for the operation of ONPRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C L Bethea.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bethea, C., Reddy, A. Ovarian steroids regulate gene expression related to DNA repair and neurodegenerative diseases in serotonin neurons of macaques. Mol Psychiatry 20, 1565–1578 (2015). https://doi.org/10.1038/mp.2014.178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.178

This article is cited by

Search

Quick links