Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

All the world’s a (clinical) stage: rethinking bipolar disorder from a longitudinal perspective

Abstract

Psychiatric disorders have traditionally been classified using a static, categorical approach. However, this approach falls short in facilitating understanding of the development, common comorbid diagnoses, prognosis and treatment of these disorders. We propose a ‘staging’ model of bipolar disorder that integrates genetic and neural information with mood and activity symptoms to describe how the disease progresses over time. From an early, asymptomatic, but ‘at-risk’ stage to severe, chronic illness, each stage is described with associated neuroimaging findings as well as strategies for mapping genetic risk factors. Integrating more biologic information relating to cardiovascular and endocrine systems, refining methodology for modeling dimensional approaches to disease and developing outcome measures will all be crucial in examining the validity of this model. Ultimately, this approach should aid in developing targeted interventions for each group that will reduce the significant morbidity and mortality associated with bipolar disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M et al. Pathways underlying neuroprogression in bipolar disorder: Focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 2011; 35: 804–817.

    Article  CAS  PubMed  Google Scholar 

  2. Leboyer M, Soreca I, Scott J, Frye M, Henry C, Tamouza R et al. Can bipolar disorder be viewed as a multi-system inflammatory disease? J Affect Disord 2012; 141: 1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Scott J, Leboyer M, Hickie IB, Berk M, Kapczinski F, Frank E, Kupfer DJ, McGorry PD . Clinical staging in psychiatry: a cross-cutting model of diagnosis with heuristic and practical value. Br J Psychiatry 2013; 202: 243–245.

    Article  PubMed  Google Scholar 

  4. McGorry PD, Hickie IB, Yung AR, Pantelis C, Jackson HJ . Clinical staging of psychiatric disorders: a heuristic framework for choosing earlier, safer, and more effective interventions. Austr N Z J Psychiatry 2006; 40: 616–622.

    Article  Google Scholar 

  5. Berk M, Conus P, Lucas N, Hallam K, Malhi GS, Dodd S et al. Setting the stage: from prodrome to treatment resistance in bipolar disorder. Bipolar Disord 2007; 9: 671–678.

    Article  PubMed  Google Scholar 

  6. APA. Diagnostic and Statistical Manual of Mental Disorders: DSM-5 5th edn American Psychiatric Publishing: Arlington, VA, USA, 2013.

  7. Ghaemi SN, Boiman EE, Goodwin FK . Diagnosing bipolar disorder and the effect of antidepressants: a naturalistic study. J Clin Psychiatry 2000; 61: 804–808.

    Article  CAS  PubMed  Google Scholar 

  8. Frank E, Cyranowski JM, Rucci P, Shear MK, Fagiolini A, Thase ME et al. Clinical significance of lifetime panic spectrum symptoms in the treatment of patients with bipolar I disorder. Arch Gen Psychiatry 2002; 59: 905–912.

    Article  PubMed  Google Scholar 

  9. Duffy A, Alda M, Hajek T, Sherry SB, Grof P . Early stages in the development of bipolar disorder. J Affect Disord 2010; 121: 127–135.

    Article  PubMed  Google Scholar 

  10. Crump C, Sundquist K, Winkleby MA, Sundquist J . Comorbidities and mortality in bipolar disorder: A Swedish National Cohort Study. Arch Gen Psychiatry 2013; 70: 931.

    Google Scholar 

  11. Fiedorowicz JG, Palagummi NM, Forman-Hoffman VL, Miller DD, Haynes WG . Elevated prevalence of obesity, metabolic syndrome, and cardiovascular risk factors in bipolar disorder. Ann Clin Psychiatry 2008; 20: 131–137.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fiedorowicz JG, Solomon DA, Endicott J, Leon AC, Li C, Rice JP et al. Manic/hypomanic symptom burden and cardiovascular mortality in bipolar disorder. Psychosomat Med 2009; 71: 598–606.

    Article  Google Scholar 

  13. Hickie IB, Scott EM, Hermens DF, Naismith SL, Guastella AJ, Kaur M et al. Applying clinical staging to young people who present for mental health care. Early Interven Psychiatry 2013; 7: 31–43.

    Article  Google Scholar 

  14. McEwen BS, Stellar E . Stress and the individual. Mechanisms leading to disease. Arch Intern Med 1993; 153: 2093–2101.

    Article  CAS  PubMed  Google Scholar 

  15. Tsuang MT, Faraone SV . The genetic epidemiology of bipolar disorder. In: Marneros A, Angst J (eds). Bipolar Disorders: 100 Years After Manic-Depressive Insanity. Kluwer Academic: Zurich, Switzerland, 2000.

    Google Scholar 

  16. Gottesman II, Shields J . A polygenic theory of schizophrenia. Int J Ment Health 1972; 1: 107–115.

    Article  Google Scholar 

  17. Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, Part II: schizophrenia. Am J Hum Genet 2003; 73: 34–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Psychiatric GWAS Consortium Coordinating Committee, Cichon S, Craddock N, Daly M, Faraone SV, Gejman PV et al. Genome-wide association studies: history, rationale, and prospects for psychiatric disorders. Am J Psychiatry 2009; 166: 540–556.

    Article  Google Scholar 

  19. Craddock N, Sklar P . Genetics of bipolar disorder. Lancet 2013; 381: 1654–1662.

    Article  CAS  PubMed  Google Scholar 

  20. Cross-Disorder Group of the Psychiatric Genomics Consortium, Lee SH, Ripke S, Neale BM, Faraone SV, Purcell SM et al. Cross-Disorder Group of the Psychiatric Genomics Consortium. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 2013; 45: 984–994.

    Article  CAS  PubMed Central  Google Scholar 

  21. Ripke S, O’Dushlaine C, Chambert K, Moran JL, Kahler AK, Akterin S et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 2013; 45: 1150–1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fears SC, Service SK, Kremeyer B, Araya C, Araya X, Bejarano J et al. Multisystem component phenotypes of bipolar disorder for genetic investigations of extended pedigrees. JAMA Psychiatry 2014; 71: 375–387.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bamne MN, Ponder CA, Wood JA, Mansour H, Frank E, Kupfer DJ et al. Application of an ex vivo cellular model of circadian variation for bipolar disorder research: a proof of concept study. Bipolar Disord 2013; 15: 694–700.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012; 485: 237–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hasler G, Drevets WC, Gould TD, Gottesman II, Manji HK . Toward constructing an endophenotype strategy for bipolar disorders. Biol Psychiatry 2006; 60: 93–105.

    Article  PubMed  Google Scholar 

  26. Andreassen OA, Thompson WK, Schork AJ, Ripke S, Mattingsdal M, Kelsoe JR et al. Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. PLoS Genet 2013; 9: e1003455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Andreassen OA, Thompson WK, Dale AM . Boosting the power of schizophrenia genetics by leveraging new statistical tools. Schizophr Bull 2013; 40: 13–17.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Efron B . Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction. Cambridge University Press: Cambridge, UK, 2012.

    Google Scholar 

  29. Andreassen Ole A, Djurovic S, Thompson Wesley K, Schork Andrew J, Kendler Kenneth S, O’Donovan Michael C et al. Improved detection of common variants associated with schizophrenia by leveraging pleiotropy with cardiovascular-disease risk factors. Am J Hum Genet 2013; 92: 197–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goodwin FK, Jamison KR, Ghaemi SN . Manic-Depressive Illness: Bipolar Disorders and Recurrent Depression2nd edn.Oxford University Press: New York, NY, p. xxvi 1262, 2007.

    Google Scholar 

  31. Phillips ML, Ladouceur CD, Drevets WC . A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry 2008; 13 9: 833–857.

    Article  Google Scholar 

  32. Caseras X, Lawrence NS, Murphy K, Wise RG, Phillips ML . Ventral striatum activity in response to reward: differences between bipolar I and II disorders. Am J Psychiatry 2013; 170: 533–541.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Swanson LW . The amygdala and its place in the cerebral hemisphere. Ann N Y Acad Sci 2003; 985: 174–184.

    Article  PubMed  Google Scholar 

  34. Davis M, Whalen PJ . The amygdala: vigilance and emotion. Mol Psychiatry 2001; 6: 13–34.

    Article  CAS  PubMed  Google Scholar 

  35. Knutson B, Wimmer GE . Splitting the difference: how does the brain code reward episodes? Ann N Y Acad Sci 2007; 1104: 54–69.

    Article  PubMed  Google Scholar 

  36. Wise RA . Dopamine, learning and motivation. Nat Rev Neurosci 2004; 5: 483–494.

    Article  CAS  PubMed  Google Scholar 

  37. Dolcos F, LaBar KS, Cabeza R . Dissociable effects of arousal and valence on prefrontal activity indexing emotional evaluation and subsequent memory: an event-related fMRI study. NeuroImage 2004; 23: 64–74.

    Article  PubMed  Google Scholar 

  38. Schmidt L, Clery-Melin ML, Lafargue G, Valabregue R, Fossati P, Dubois B et al. Get aroused and be stronger: emotional facilitation of physical effort in the human brain. J Neurosci 2009; 29: 9450–9457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grabenhorst F, Rolls ET . Value, pleasure and choice in the ventral prefrontal cortex. Trends Cogn Sci 2011; 15: 56–67.

    Article  PubMed  Google Scholar 

  40. Rogers RD, Ramnani N, Mackay C, Wilson JL, Jezzard P, Carter CS et al. Distinct portions of anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition. Biol Psychiatry 2004; 55: 594–602.

    Article  PubMed  Google Scholar 

  41. Pedroni A, Koeneke S, Velickaite A, Jancke L . Differential magnitude coding of gains and omitted rewards in the ventral striatum. Brain Res 2011; 1411: 76–86.

    Article  CAS  PubMed  Google Scholar 

  42. Foland-Ross LC, Bookheimer SY, Lieberman MD, Sugar CA, Townsend JD, Fischer J et al. Normal amygdala activation but deficient ventrolateral prefrontal activation in adults with bipolar disorder during euthymia. NeuroImage 2012; 59: 738–744.

    Article  PubMed  Google Scholar 

  43. Townsend JD, Torrisi SJ, Lieberman MD, Sugar CA, Bookheimer SY, Altshuler LL . Frontal–amygdala connectivity alterations during emotion downregulation in bipolar I disorder. Biol Psychiatry 2013; 73: 127–135.

    Article  PubMed  Google Scholar 

  44. Altshuler L, Bookheimer S, Townsend J, Proenza MA, Sabb F, Mintz J et al. Regional brain changes in bipolar I depression: a functional magnetic resonance imaging study. Bipolar Disord 2008; 10: 708–717.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Strakowski SM, Eliassen JC, Lamy M, Cerullo MA, Allendorfer JB, Madore M et al. Functional magnetic resonance imaging brain activation in bipolar mania: evidence for disruption of the ventrolateral prefrontal–amygdala emotional pathway. Biol Psychiatry 2011; 69: 381–388.

    Article  PubMed  Google Scholar 

  46. Townsend JD, Bookheimer SY, Foland-Ross LC, Moody TD, Eisenberger NI, Fischer JS et al. Deficits in inferior frontal cortex activation in euthymic bipolar disorder patients during a response inhibition task. Bipolar Disord 2012; 14: 442–450.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Delvecchio G, Fossati P, Boyer P, Brambilla P, Falkai P, Gruber O et al. Common and distinct neural correlates of emotional processing in bipolar disorder and major depressive disorder: a voxel-based meta-analysis of functional magnetic resonance imaging studies. Eur Neuropsychopharmacol 2012; 22: 100–113.

    Article  CAS  PubMed  Google Scholar 

  48. Lawrence NS, Williams AM, Surguladze S, Giampietro V, Brammer MJ, Andrew C et al. Subcortical and ventral prefrontal cortical neural responses to facial expressions distinguish patients with bipolar disorder and major depression. Biol Psychiatry 2004; 55: 578–587.

    Article  PubMed  Google Scholar 

  49. Blumberg HP, Donegan NH, Sanislow CA, Collins S, Lacadie C, Skudlarski P et al. Preliminary evidence for medication effects on functional abnormalities in the amygdala and anterior cingulate in bipolar disorder. Psychopharmacology (Berl) 2005; 183: 308–313.

    Article  CAS  Google Scholar 

  50. Keener MT, Fournier JC, Mullin BC, Kronhaus D, Perlman SB, LaBarbara E et al. Dissociable patterns of medial prefrontal and amygdala activity to face identity versus emotion in bipolar disorder. Psychol Med 2012; 42: 1913–1924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Surguladze SA, Marshall N, Schulze K, Hall MH, Walshe M, Bramon E et al. Exaggerated neural response to emotional faces in patients with bipolar disorder and their first-degree relatives. NeuroImage 2010; 53: 58–64.

    Article  CAS  PubMed  Google Scholar 

  52. Almeida JR, Versace A, Mechelli A, Hassel S, Quevedo K, Kupfer DJ et al. Abnormal amygdala–prefrontal effective connectivity to happy faces differentiates bipolar from major depression. Biol Psychiatry 2009; 66: 451–459.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Versace A, Thompson WK, Zhou D, Almeida JR, Hassel S, Klein CR et al. Abnormal left and right amygdala–orbitofrontal cortical functional connectivity to emotional faces: state versus trait vulnerability markers of depression in bipolar disorder. Biol Psychiatry 2010; 67: 422–431.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Almeida JR, Mechelli A, Hassel S, Versace A, Kupfer DJ, Phillips ML . Abnormally increased effective connectivity between parahippocampal gyrus and ventromedial prefrontal regions during emotion labeling in bipolar disorder. Psychiatry Res 2009; 174: 195–201.

    Article  PubMed  PubMed Central  Google Scholar 

  55. O'Sullivan N, Szczepanowski R, El-Deredy W, Mason L, Bentall RP . fMRI evidence of a relationship between hypomania and both increased goal-sensitivity and positive outcome-expectancy bias. Neuropsychologia 2011; 49: 2825–2835.

    Article  PubMed  Google Scholar 

  56. Nusslock R, Almeida JR, Forbes EE, Versace A, Frank E, Labarbara EJ et al. Waiting to win: elevated striatal and orbitofrontal cortical activity during reward anticipation in euthymic bipolar disorder adults. Bipolar Disord 2012; 14: 249–260.

    Article  PubMed  Google Scholar 

  57. Chase HW, Nusslock R, Almeida JR, Forbes EE, LaBarbara EJ, Phillips ML . Dissociable patterns of abnormal frontal cortical activation during anticipation of an uncertain reward or loss in bipolar versus major depression. Bipolar Disord 2013; 15: 839–854.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bermpohl F, Kahnt T, Dalanay U, Hagele C, Sajonz B, Wegner T et al. Altered representation of expected value in the orbitofrontal cortex in mania. Hum Brain Mapp 2010; 31: 958–969.

    Article  PubMed  Google Scholar 

  59. Linke J, King AV, Rietschel M, Strohmaier J, Hennerici M, Gass A et al. Increased medial orbitofrontal and amygdala activation: evidence for a systems-level endophenotype of bipolar I disorder. Am J Psychiatry 2012; 169: 316–325.

    Article  PubMed  Google Scholar 

  60. Abler B, Greenhouse I, Ongur D, Walter H, Heckers S . Abnormal reward system activation in mania. Neuropsychopharmacology 2008; 33: 2217–2227.

    Article  CAS  PubMed  Google Scholar 

  61. Foland-Ross LC, Thompson PM, Sugar CA, Madsen SK, Shen JK, Penfold C et al. Investigation of cortical thickness abnormalities in lithium-free adults with bipolar I disorder using cortical pattern matching. Am J Psychiatry 2011; 168: 530–539.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rimol LM, Hartberg CB, Nesvag R, Fennema-Notestine C, Hagler DJ Jr, Pung CJ et al. Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder. Biol Psychiatry 2010; 68: 41–50.

    Article  PubMed  Google Scholar 

  63. Matsuo K, Kopecek M, Nicoletti MA, Hatch JP, Watanabe Y, Nery FG et al. New structural brain imaging endophenotype in bipolar disorder. Mol Psychiatry 2012; 17: 412–420.

    Article  CAS  PubMed  Google Scholar 

  64. Emsell L, Leemans A, Langan C, Van Hecke W, Barker GJ, McCarthy P et al. Limbic and callosal white matter changes in euthymic bipolar I disorder: an advanced diffusion magnetic resonance imaging tractography study. Biol Psychiatry 2013; 73: 194–201.

    Article  PubMed  Google Scholar 

  65. Versace A, Almeida JR, Hassel S, Walsh ND, Novelli M, Klein CR et al. Elevated left and reduced right orbitomedial prefrontal fractional anisotropy in adults with bipolar disorder revealed by tract-based spatial statistics. Arch Gen Psychiatry 2008; 65: 1041–1052.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Versace A, Andreazza AC, Young LT, Fournier JC, Almeida JR, Stiffler RS et al. Elevated serum measures of lipid peroxidation and abnormal prefrontal white matter in euthymic bipolar adults: toward peripheral biomarkers of bipolar disorder. Mol Psychiatry 2014; 19: 200–208.

    Article  CAS  PubMed  Google Scholar 

  67. Mahon K, Burdick KE, Szeszko PR . A role for white matter abnormalities in the pathophysiology of bipolar disorder. Neurosci Biobehav Rev 2010; 34: 533–554.

    Article  PubMed  Google Scholar 

  68. Wang F, Jackowski M, Kalmar JH, Chepenik LG, Tie K, Qiu M et al. Abnormal anterior cingulum integrity in bipolar disorder determined through diffusion tensor imaging. Br J Psychiatry 2008; 193: 126–129.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang F, Kalmar JH, Edmiston E, Chepenik LG, Bhagwagar Z, Spencer L et al. Abnormal corpus callosum integrity in bipolar disorder: a diffusion tensor imaging study. Biol Psychiatry 2008; 64: 730–733.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Benedetti F, Absinta M, Rocca MA, Radaelli D, Poletti S, Bernasconi A et al. Tract-specific white matter structural disruption in patients with bipolar disorder. Bipolar Disord 2011; 13: 414–424.

    Article  PubMed  Google Scholar 

  71. Chaddock CA, Barker GJ, Marshall N, Schulze K, Hall MH, Fern A et al. White matter microstructural impairments and genetic liability to familial bipolar I disorder. Br J Psychiatry 2009; 194: 527–534.

    Article  PubMed  Google Scholar 

  72. Versace A, Almeida JR, Quevedo K, Thompson WK, Terwilliger RA, Hassel S et al. Right orbitofrontal corticolimbic and left corticocortical white matter connectivity differentiate bipolar and unipolar depression. Biol Psychiatry 2010; 68: 560–567.

    Article  PubMed  PubMed Central  Google Scholar 

  73. van der Schot AC, Vonk R, Brouwer RM, van Baal GC, Brans RG, van Haren NE et al. Genetic and environmental influences on focal brain density in bipolar disorder. Brain 2010; 133: 3080–3092.

    Article  PubMed  Google Scholar 

  74. Benedetti F, Yeh PH, Bellani M, Radaelli D, Nicoletti MA, Poletti S et al. Disruption of white matter integrity in bipolar depression as a possible structural marker of illness. Biol Psychiatry 2011; 69: 309–317.

    Article  PubMed  Google Scholar 

  75. Mahon K, Burdick KE, Ikuta T, Braga RJ, Gruner P, Malhotra AK et al. Abnormal temporal lobe white matter as a biomarker for genetic risk of bipolar disorder. Biol Psychiatry 2013; 73: 177–182.

    Article  PubMed  Google Scholar 

  76. Bruno S, Cercignani M, Ron MA . White matter abnormalities in bipolar disorder: a voxel-based diffusion tensor imaging study. Bipolar Disord 2008; 10: 460–468.

    Article  PubMed  Google Scholar 

  77. Blumberg HP, Kaufman J, Martin A, Whiteman R, Zhang JH, Gore JC et al. Amygdala and hippocampal volumes in adolescents and adults with bipolar disorder. Arch Gen Psychiatry 2003; 60: 1201–1208.

    Article  PubMed  Google Scholar 

  78. Wijeratne C, Sachdev S, Wen W, Piguet O, Lipnicki DM, Malhi GS et al. Hippocampal and amygdala volumes in an older bipolar disorder sample. Int Psychogeriatr 2013; 25: 54–60.

    Article  PubMed  Google Scholar 

  79. Foland-Ross LC, Brooks JO 3rd, Mintz J, Bartzokis G, Townsend J, Thompson PM et al. Mood-state effects on amygdala volume in bipolar disorder. J Affect Disord 2012; 139: 298–301.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Foland LC, Altshuler LL, Sugar CA, Lee AD, Leow AD, Townsend J et al. Increased volume of the amygdala and hippocampus in bipolar patients treated with lithium. NeuroReport 2008; 19: 221–224.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pfeifer JC, Welge J, Strakowski SM, Adler CM, DelBello MP . Meta-analysis of amygdala volumes in children and adolescents with bipolar disorder. J Am Acad Child Adolesc Psychiatry 2008; 47: 1289–1298.

    Article  PubMed  Google Scholar 

  82. Hajek T, Kopecek M, Hoschl C, Alda M . Smaller hippocampal volumes in patients with bipolar disorder are masked by exposure to lithium: a meta-analysis. J Psychiatry Neurosci 2012; 37: 333–343.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hallahan B, Newell J, Soares JC, Brambilla P, Strakowski SM, Fleck DE et al. Structural magnetic resonance imaging in bipolar disorder: an international collaborative mega-analysis of individual adult patient data. Biol Psychiatry 2011; 69: 326–335.

    Article  PubMed  Google Scholar 

  84. Javadapour A, Malhi GS, Ivanovski B, Chen X, Wen W, Sachdev P . Hippocampal volumes in adults with bipolar disorder. J Neuropsychiatry Clin Neurosci 2010; 22: 55–62.

    Article  PubMed  Google Scholar 

  85. Ong D, Walterfang M, Malhi GS, Styner M, Velakoulis D, Pantelis C . Size and shape of the caudate nucleus in individuals with bipolar affective disorder. Aust N Z J Psychiatry 2012; 46: 340–351.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Lisy ME, Jarvis KB, DelBello MP, Mills NP, Weber WA, Fleck D et al. Progressive neurostructural changes in adolescent and adult patients with bipolar disorder. Bipolar Disord 2011; 13: 396–405.

    Article  PubMed  Google Scholar 

  87. Ladouceur CD, Diwadkar VA, White R, Bass J, Birmaher B, Axelson DA et al. Fronto-limbic function in unaffected offspring at familial risk for bipolar disorder during an emotional working memory paradigm. Dev Cogn Neurosci 2013; 5: 185–196.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kim P, Jenkins SE, Connolly ME, Deveney CM, Fromm SJ, Brotman MA et al. Neural correlates of cognitive flexibility in children at risk for bipolar disorder. J Psychiatr Res 2012; 46: 22–30.

    Article  PubMed  Google Scholar 

  89. Whalley HC, Sussmann JE, Chakirova G, Mukerjee P, Peel A, McKirdy J et al. The neural basis of familial risk and temperamental variation in individuals at high risk of bipolar disorder. Biol Psychiatry 2011; 70: 343–349.

    Article  PubMed  Google Scholar 

  90. Ladouceur CD, Almeida JR, Birmaher B, Axelson DA, Nau S, Kalas C et al. Subcortical gray matter volume abnormalities in healthy bipolar offspring: potential neuroanatomical risk marker for bipolar disorder? J Am Acad Child Adolesc Psychiatry 2008; 47: 532–539.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Hajek T, Gunde E, Slaney C, Propper L, MacQueen G, Duffy A et al. Striatal volumes in affected and unaffected relatives of bipolar patients—high-risk study. J Psychiatr Res 2009; 43: 724–729.

    Article  PubMed  Google Scholar 

  92. Noga JT, Vladar K, Torrey EF . A volumetric magnetic resonance imaging study of monozygotic twins discordant for bipolar disorder. Psychiatry Res 2001; 106: 25–34.

    Article  CAS  PubMed  Google Scholar 

  93. van der Schot AC, Vonk R, Brans RG, van Haren NE, Koolschijn PC, Nuboer V et al. Influence of genes and environment on brain volumes in twin pairs concordant and discordant for bipolar disorder. Arch Gen Psychiatry 2009; 66: 142–151.

    Article  PubMed  Google Scholar 

  94. Hajek T, Gunde E, Bernier D, Slaney C, Propper L, Grof P et al. Subgenual cingulate volumes in affected and unaffected offspring of bipolar parents. J Affect Disord 2008; 108: 263–269.

    Article  PubMed  Google Scholar 

  95. Hajek T, Bernier D, Slaney C, Propper L, Schmidt M, Carrey N et al. A comparison of affected and unaffected relatives of patients with bipolar disorder using proton magnetic resonance spectroscopy. J Psychiatry Neurosci 2008; 33: 531–540.

    PubMed  PubMed Central  Google Scholar 

  96. Mondelli V, Dazzan P, Gabilondo A, Tournikioti K, Walshe M, Marshall N et al. Pituitary volume in unaffected relatives of patients with schizophrenia and bipolar disorder. Psychoneuroendocrinology 2008; 33: 1004–1012.

    Article  PubMed  Google Scholar 

  97. Hajek T, Novak T, Kopecek M, Gunde E, Alda M, Hoschl C . Subgenual cingulate volumes in offspring of bipolar parents and in sporadic bipolar patients. Eur Arch Psychiatry Clin Neurosci 2010; 260: 297–304.

    Article  PubMed  Google Scholar 

  98. Versace A, Ladouceur CD, Romero S, Birmaher B, Axelson DA, Kupfer DJ et al. Altered development of white matter in youth at high familial risk for bipolar disorder: a diffusion tensor imaging study. J Am Acad Child Adolesc Psychiatry 2010; 49: 1249–1259.

    PubMed  PubMed Central  Google Scholar 

  99. Sprooten E, Sussmann JE, Clugston A, Peel A, McKirdy J, Moorhead TW et al. White matter integrity in individuals at high genetic risk of bipolar disorder. Biol Psychiatry 2011; 70: 350–356.

    Article  PubMed  Google Scholar 

  100. Bertocci MA, Bebko G, Olino T, Fournier J, Hinze AK, Bonar L et al. Behavioral and emotional dysregulation trajectories marked by prefrontal–amygdala function in symptomatic youth. Psychol Med advance online publication, 27 January 2014 (e-pub ahead of print).

  101. Drapier D, Surguladze S, Marshall N, Schulze K, Fern A, Hall MH et al. Genetic liability for bipolar disorder is characterized by excess frontal activation in response to a working memory task. Biol Psychiatry 2008; 64: 513–520.

    Article  PubMed  Google Scholar 

  102. Thermenos HW, Goldstein JM, Milanovic SM, Whitfield-Gabrieli S, Makris N, Laviolette P et al. An fMRI study of working memory in persons with bipolar disorder or at genetic risk for bipolar disorder. Am J Med Genet B 2010; 153B: 120–131.

    Google Scholar 

  103. Pompei F, Jogia J, Tatarelli R, Girardi P, Rubia K, Kumari V et al. Familial and disease specific abnormalities in the neural correlates of the stroop task in bipolar disorder. NeuroImage 2011; 56: 1677–1684.

    Article  PubMed  Google Scholar 

  104. Pompei F, Dima D, Rubia K, Kumari V, Frangou S . Dissociable functional connectivity changes during the Stroop task relating to risk, resilience and disease expression in bipolar disorder. NeuroImage 2011; 57: 576–582.

    Article  PubMed  Google Scholar 

  105. Bebko G, Bertocci MA, Fournier JC, Hinze AK, Bonar L, Almeida et al. Parsing dimensional versus diagnostic category-related patterns of reward circuitry function in behaviourally and emotionally dysregulated youth in the Longitudinal Assessment of Manic Symptoms (LAMS) study. JAMA Psychiatry 2014; 71: 71–80.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Fusar-Poli P, Howes O, Bechdolf A, Borgwardt S . Mapping vulnerability to bipolar disorder: a systematic review and meta-analysis of neuroimaging studies. J Psychiatry Neurosci 2012; 37: 170–184.

    Article  PubMed  PubMed Central  Google Scholar 

  107. McDonald C, Bullmore ET, Sham PC, Chitnis X, Wickham H, Bramon E et al. Association of genetic risks for schizophrenia and bipolar disorder with specific and generic brain structural endophenotypes. Arch Gen Psychiatry 2004; 61: 974–984.

    Article  PubMed  Google Scholar 

  108. Hajek T, Cullis J, Novak T, Kopecek M, Blagdon R, Propper L et al. Brain structural signature of familial predisposition for bipolar disorder: replicable evidence for involvement of the right inferior frontal gyrus. Biol Psychiatry 2013; 73: 144–152.

    Article  PubMed  Google Scholar 

  109. Kempton MJ, Haldane M, Jogia J, Grasby PM, Collier D, Frangou S . Dissociable brain structural changes associated with predisposition, resilience, and disease expression in bipolar disorder. J Neurosci 2009; 29: 10863–10868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Singh MK, Delbello MP, Adler CM, Stanford KE, Strakowski SM . Neuroanatomical characterization of child offspring of bipolar parents. J Am Acad Child Adolesc Psychiatry 2008; 47: 526–531.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Takahashi YK, Roesch MR, Wilson RC, Toreson K, O'Donnell P, Niv Y et al. Expectancy-related changes in firing of dopamine neurons depend on orbitofrontal cortex. Nat Neurosci 2011; 14: 1590–1597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Karchemskiy A, Garrett A, Howe M, Adleman N, Simeonova DI, Alegria D et al. Amygdalar, hippocampal, and thalamic volumes in youth at high risk for development of bipolar disorder. Psychiatry Res 2011; 194: 319–325.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Frazier JA, Breeze JL, Papadimitriou G, Kennedy DN, Hodge SM, Moore CM et al. White matter abnormalities in children with and at risk for bipolar disorder. Bipolar Disord 2007; 9: 799–809.

    Article  PubMed  Google Scholar 

  114. Walterfang M, Wood AG, Barton S, Velakoulis D, Chen J, Reutens DC et al. Corpus callosum size and shape alterations in individuals with bipolar disorder and their first-degree relatives. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33: 1050–1057.

    Article  PubMed  Google Scholar 

  115. Schneider MR, DelBello MP, McNamara RK, Strakowski SM, Adler CM . Neuroprogression in bipolar disorder. Bipolar Disord 2012; 14: 356–374.

    Article  PubMed  Google Scholar 

  116. Kalmar JH, Wang F, Spencer L, Edmiston E, Lacadie CM, Martin A et al. Preliminary evidence for progressive prefrontal abnormalities in adolescents and young adults with bipolar disorder. J Int Neuropsychol Soc 2009; 15: 476–481.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Ekman CJ, Lind J, Ryden E, Ingvar M, Landen M . Manic episodes are associated with grey matter volume reduction—a voxel-based morphometry brain analysis. Acta Psychiatr Scand 2010; 122: 507–515.

    Article  CAS  PubMed  Google Scholar 

  118. Lyoo IK, Kim MJ, Stoll AL, Demopulos CM, Parow AM, Dager SR et al. Frontal lobe gray matter density decreases in bipolar I disorder. Biol Psychiatry 2004; 55: 648–651.

    Article  PubMed  Google Scholar 

  119. Lyoo IK, Sung YH, Dager SR, Friedman SD, Lee JY, Kim SJ et al. Regional cerebral cortical thinning in bipolar disorder. Bipolar Disord 2006; 8: 65–74.

    Article  PubMed  Google Scholar 

  120. Moore GJ, Cortese BM, Glitz DA, Zajac-Benitez C, Quiroz JA, Uhde TW et al. A longitudinal study of the effects of lithium treatment on prefrontal and subgenual prefrontal gray matter volume in treatment-responsive bipolar disorder patients. J Clin Psychiatry 2009; 70: 699–705.

    Article  CAS  PubMed  Google Scholar 

  121. Lopez-Larson MP, DelBello MP, Zimmerman ME, Schwiers ML, Strakowski SM . Regional prefrontal gray and white matter abnormalities in bipolar disorder. Biol Psychiatry 2002; 52: 93–100.

    Article  PubMed  Google Scholar 

  122. Li M, Cui L, Deng W, Ma X, Huang C, Jiang L et al. Voxel-based morphometric analysis on the volume of gray matter in bipolar I disorder. Psychiatry Res 2011; 191: 92–97.

    Article  PubMed  Google Scholar 

  123. Altshuler LL, Bartzokis G, Grieder T, Curran J, Jimenez T, Leight K et al. An MRI study of temporal lobe structures in men with bipolar disorder or schizophrenia. Biol Psychiatry 2000; 48: 147–162.

    Article  CAS  PubMed  Google Scholar 

  124. Doty TJ, Payne ME, Steffens DC, Beyer JL, Krishnan KR, LaBar KS . Age-dependent reduction of amygdala volume in bipolar disorder. Psychiatry Res 2008; 163: 84–94.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Brambilla P, Harenski K, Nicoletti MA, Mallinger AG, Frank E, Kupfer DJ et al. Anatomical MRI study of basal ganglia in bipolar disorder patients. Psychiatry Res 2001; 106: 65–80.

    Article  CAS  PubMed  Google Scholar 

  126. Usher J, Menzel P, Schneider-Axmann T, Kemmer C, Reith W, Falkai P et al. Increased right amygdala volume in lithium-treated patients with bipolar I disorder. Acta Psychiatr Scand 2010; 121 (2): 119–124.

    Article  CAS  PubMed  Google Scholar 

  127. Hajek T, Kopecek M, Kozeny J, Gunde E, Alda M, Hoschl C . Amygdala volumes in mood disorders—meta-analysis of magnetic resonance volumetry studies. J Affect Disord 2009; 115 (3): 395–410.

    Article  PubMed  Google Scholar 

  128. Adler CM, Holland SK, Schmithorst V, Wilke M, Weiss KL, Pan H et al. Abnormal frontal white matter tracts in bipolar disorder: a diffusion tensor imaging study. Bipolar Disord 2004; 6 (3): 197–203.

    Article  PubMed  Google Scholar 

  129. Sarnicola A, Kempton M, Germana C, Haldane M, Hadjulis M, Christodoulou T et al. No differential effect of age on brain matter volume and cognition in bipolar patients and healthy individuals. Bipolar Disord 2009; 11 (3): 316–322.

    Article  PubMed  Google Scholar 

  130. McIntosh AM, Munoz Maniega S, Lymer GK, McKirdy J, Hall J, Sussmann JE et al. White matter tractography in bipolar disorder and schizophrenia. Biol Psychiatry 2008; 64 (12): 1088–1092.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NIMH Grants MH63480, TW008302 and MH09375, awarded to Dr Nimgaonkar; and MH092221-03, MH0922250, MH073953 and MH060952-12S1, awarded to Dr Phillips; MH081003 awarded to Drs Kupfer and Frank, and a bequest from the Mueller family. We thank Fiona C Ritchey, BA for her editorial assistance in preparing this manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Frank.

Ethics declarations

Competing interests

Drs Frank and Kupfer are consultants to the American Psychiatric Association and each has an equity interest in Psychiatric Assessments. Dr Frank receives royalties from Guilford Press and the American Psychological Association and has received honoraria from Servier and Lundbeck. The other authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, E., Nimgaonkar, V., Phillips, M. et al. All the world’s a (clinical) stage: rethinking bipolar disorder from a longitudinal perspective. Mol Psychiatry 20, 23–31 (2015). https://doi.org/10.1038/mp.2014.71

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.71

This article is cited by

Search

Quick links