Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Erasure of fear memories is prevented by Nogo Receptor 1 in adulthood

Abstract

Critical periods are temporary windows of heightened neural plasticity early in development. For example, fear memories in juvenile rodents are subject to erasure following extinction training, while after closure of this critical period, extinction training only temporarily and weakly suppresses fear memories. Persistence of fear memories is important for survival, but the inability to effectively adapt to the trauma is a characteristic of post-traumatic stress disorder (PTSD). We examined whether Nogo Receptor 1 (NgR1) regulates the plasticity associated with fear extinction. The loss of NgR1 function in adulthood eliminates spontaneous fear recovery and fear renewal, with a restoration of fear reacquisition rate equal to that of naive mice; thus, mimicking the phenotype observed in juvenile rodents. Regional gene disruption demonstrates that NgR1 expression is required in both the basolateral amygdala (BLA) and infralimbic (IL) cortex to prevent fear erasure. NgR1 expression by parvalbumin expressing interneurons is essential for limiting extinction-dependent plasticity. NgR1 gene deletion enhances anatomical changes of inhibitory synapse markers after extinction training. Thus, NgR1 robustly inhibits elimination of fear expression in the adult brain and could serve as a therapeutic target for anxiety disorders, such as PTSD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kim JH, Richardson R . A developmental dissociation of context and GABA effects on extinguished fear in rats. Behav Neurosci 2007; 121: 131–139.

    Article  CAS  Google Scholar 

  2. Kim JH, Richardson R . A developmental dissociation in reinstatement of an extinguished fear response in rats. Neurobiol Learn Mem 2007; 88: 48–57.

    Article  CAS  Google Scholar 

  3. Gogolla N, Caroni P, Luthi A, Herry C . Perineuronal nets protect fear memories from erasure. Science 2009; 325: 1258–1261.

    Article  CAS  Google Scholar 

  4. Pavlov IP . Conditioned Reflexes Oxford UP: London, 1927.

  5. Herry C, Ferraguti F, Singewald N, Letzkus JJ, Ehrlich I, Luthi A . Neuronal circuits of fear extinction. Eur J Neurosci 2010; 31: 599–612.

    Article  Google Scholar 

  6. Bouton ME . Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biol Psychiatry 2002; 52: 976–986.

    Article  Google Scholar 

  7. Quartermain D, McEwen BS . Temporal characteristics of amnesia induced by protein synthesis inhibitor: determination by shock level. Nature 1970; 228: 677–678.

    Article  CAS  Google Scholar 

  8. Quartermain D, McEwen BS, Azmitia EC Jr . Amnesia produced by electroconvulsive shock or cycloheximide: conditions for recovery. Science 1970; 169: 683–686.

    Article  CAS  Google Scholar 

  9. Fournier AE, GrandPre T, Strittmatter SM . Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 2001; 409: 341–346.

    Article  CAS  Google Scholar 

  10. Liu BP, Fournier A, GrandPre T, Strittmatter SM . Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. Science 2002; 297: 1190–1193.

    Article  CAS  Google Scholar 

  11. Dickendesher TL, Baldwin KT, Mironova YA, Koriyama Y, Raiker SJ, Askew KL et al. NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat Neurosci 2012; 15: 703–712.

    Article  CAS  Google Scholar 

  12. Wang X, Chun S, Treloar H, Vartanian T, Greer C, Strittmatter S . Localization of Nogo-A and Nogo-66 receptor proteins at sites of axon-myelin and synaptic contact. J Neurosci 2002; 22: 5505–5515.

    Article  CAS  Google Scholar 

  13. Raiker SJ, Lee H, Baldwin KT, Duan Y, Shrager P, Giger RJ . Oligodendrocyte-myelin glycoprotein and Nogo negatively regulate activity-dependent synaptic plasticity. J Neurosci 2010; 30: 12432–12445.

    Article  CAS  Google Scholar 

  14. McGee AW, Yang Y, Fischer QS, Daw NW, Strittmatter SM . Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science 2005; 309: 2222–2226.

    Article  CAS  Google Scholar 

  15. Akbik FV, Bhagat SM, Patel PR, Cafferty WB, Strittmatter SM . Anatomical plasticity of adult brain is titrated by Nogo Receptor 1. Neuron 2013; 77: 859–866.

    Article  CAS  Google Scholar 

  16. Zemmar A, Weinmann O, Kellner Y, Yu X, Vicente R, Gullo M et al. Neutralization of Nogo-A enhances synaptic plasticity in the rodent motor cortex and improves motor learning in vivo. J Neurosci 2014; 34: 8685–8698.

    Article  Google Scholar 

  17. Karlen A, Karlsson TE, Mattsson A, Lundstromer K, Codeluppi S, Pham TM et al. Nogo receptor 1 regulates formation of lasting memories. Proc Natl Acad Sci USA 2009; 106: 20476–20481.

    Article  CAS  Google Scholar 

  18. Budel S, Padukkavidana T, Liu BP, Feng Z, Hu FH, Johnson S et al. Genetic variants of Nogo-66 receptor with possible association to schizophrenia block myelin inhibition of axon growth. J Neurosci 2008; 28: 13161–13172.

    Article  CAS  Google Scholar 

  19. Kim JE, Li SX, GrandPre T, Qiu D, Strittmatter SM . Axon regeneration in young adult mice lacking Nogo-A/B. Neuron 2003; 38: 187–199.

    Article  CAS  Google Scholar 

  20. Kim JE, Liu BP, Park JH, Strittmatter SM . Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. Neuron 2004; 44: 439–451.

    Article  CAS  Google Scholar 

  21. Hippenmeyer S, Vrieseling E, Sigrist M, Portmann T, Laengle C, Ladle DR et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol 2005; 3: e159.

    Article  Google Scholar 

  22. Wang X, Duffy P, McGee AW, Hasan O, Gould G, Tu N et al. Recovery from chronic spinal cord contusion after Nogo receptor intervention. Ann Neurol 2011; 70: 805–821.

    Article  CAS  Google Scholar 

  23. Wang X, Yigitkanli K, Kim CY, Sekine-Komo T, Wirak D, Frieden E et al. Human NgR-Fc decoy protein via lumbar intrathecal bolus administration enhances recovery from rat spinal cord contusion. J Neurotrauma 2014; 31: 1955–1966.

    Article  Google Scholar 

  24. Park JH, Gimbel DA, GrandPre T, Lee JK, Kim JE, Li W et al. Alzheimer precursor protein interaction with the Nogo-66 receptor reduces amyloid-beta plaque deposition. J Neurosci 2006; 26: 1386–1395.

    Article  CAS  Google Scholar 

  25. Pickens CL, Golden SA, Adams-Deutsch T, Nair SG, Shaham Y . Long-lasting incubation of conditioned fear in rats. Biol Psychiatry 2009; 65: 881–886.

    Article  Google Scholar 

  26. Doyere V, Debiec J, Monfils MH, Schafe GE, LeDoux JE . Synapse-specific reconsolidation of distinct fear memories in the lateral amygdala. Nat Neurosci 2007; 10: 414–416.

    Article  CAS  Google Scholar 

  27. Diaz-Mataix L, Debiec J, LeDoux JE, Doyere V . Sensory-specific associations stored in the lateral amygdala allow for selective alteration of fear memories. J Neurosci 2011; 31: 9538–9543.

    Article  CAS  Google Scholar 

  28. Lai CS, Franke TF, Gan WB . Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature 2012; 483: 87–91.

    Article  CAS  Google Scholar 

  29. Liu BP, Fournier A, GrandPre T, Strittmatter SM . Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor.[comment]. Science 2002; 297: 1190–1193.

    Article  CAS  Google Scholar 

  30. Fournier AE, Gould GC, Liu BP, Strittmatter SM . Truncated soluble Nogo receptor binds Nogo-66 and blocks inhibition of axon growth by myelin. J Neurosci 2002; 22: 8876–8883.

    Article  CAS  Google Scholar 

  31. Li SX, Liu BP, Budel S, Li MW, Ji BX, Walus L et al. Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury. J Neurosci 2004; 24: 10511–10520.

    Article  CAS  Google Scholar 

  32. Rodrigues SM, Schafe GE, LeDoux JE . Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. Neuron 2004; 44: 75–91.

    Article  CAS  Google Scholar 

  33. Duvarci S, Pare D . Amygdala microcircuits controlling learned fear. Neuron 2014; 82: 966–980.

    Article  CAS  Google Scholar 

  34. Barad M, Gean PW, Lutz B . The role of the amygdala in the extinction of conditioned fear. Biol Psychiatry 2006; 60: 322–328.

    Article  Google Scholar 

  35. Quirk GJ, Russo GK, Barron JL, Lebron K . The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci 2000; 20: 6225–6231.

    Article  CAS  Google Scholar 

  36. Vidal-Gonzalez I, Vidal-Gonzalez B, Rauch SL, Quirk GJ . Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem 2006; 13: 728–733.

    Article  Google Scholar 

  37. Peters J, Dieppa-Perea LM, Melendez LM, Quirk GJ . Induction of fear extinction with hippocampal-infralimbic BDNF. Science 2010; 328: 1288–1290.

    Article  CAS  Google Scholar 

  38. Trouche S, Sasaki JM, Tu T, Reijmers LG . Fear extinction causes target-specific remodeling of perisomatic inhibitory synapses. Neuron 2013; 80: 1054–1065.

    Article  CAS  Google Scholar 

  39. Donato F, Rompani SB, Caroni P . Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature 2013; 504: 272–276.

    Article  CAS  Google Scholar 

  40. Courtin J, Chaudun F, Rozeske RR, Karalis N, Gonzalez-Campo C, Wurtz H et al. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature 2014; 505: 92–96.

    Article  Google Scholar 

  41. Wolff SB, Grundemann J, Tovote P, Krabbe S, Jacobson GA, Muller C et al. Amygdala interneuron subtypes control fear learning through disinhibition. Nature 2014; 509: 453–458.

    Article  CAS  Google Scholar 

  42. Josephson A, Trifunovski A, Scheele C, Widenfalk J, Wahlestedt C, Brene S et al. Activity-induced and developmental downregulation of the Nogo receptor. Cell Tissue Res 2003; 311: 333–342.

    CAS  PubMed  Google Scholar 

  43. Stephany CE, Chan LL, Parivash SN, Dorton HM, Piechowicz M, Qiu S et al. Plasticity of binocularity and visual acuity are differentially limited by nogo receptor. J Neurosci 2014; 34: 11631–11640.

    Article  CAS  Google Scholar 

  44. Gourley SL, Kedves AT, Olausson P, Taylor JR . A history of corticosterone exposure regulates fear extinction and cortical NR2B, GluR2/3, and BDNF. Neuropsychopharmacology 2009; 34: 707–716.

    Article  CAS  Google Scholar 

  45. Milad MR, Quirk GJ . Fear extinction as a model for translational neuroscience: ten years of progress. Annu Rev Psychol 2012; 63: 129–151.

    Article  Google Scholar 

  46. Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatry 2009; 66: 1075–1082.

    Article  Google Scholar 

  47. Phelps EA, Delgado MR, Nearing KI, LeDoux JE . Extinction learning in humans: role of the amygdala and vmPFC. Neuron 2004; 43: 897–905.

    Article  CAS  Google Scholar 

  48. Chhatwal JP, Myers KM, Ressler KJ, Davis M . Regulation of gephyrin and GABAA receptor binding within the amygdala after fear acquisition and extinction. J Neurosci 2005; 25: 502–506.

    Article  CAS  Google Scholar 

  49. Heldt SA, Ressler KJ . Training-induced changes in the expression of GABAA-associated genes in the amygdala after the acquisition and extinction of Pavlovian fear. Eur J Neurosci 2007; 26: 3631–3644.

    Article  Google Scholar 

  50. Hensch TK . Critical period plasticity in local cortical circuits. Nat Rev Neurosci 2005; 6: 877–888.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SMS is a member of the Kavli Institute for Neuroscience at Yale University. We acknowledge research support from the NIH and the Falk Medical Research Trust to SMS. We thank Adam Kaufman, Stefano Sodi and Yiguang Fu for technical assistance. SMB is supported by the National Science Foundation Graduate Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Strittmatter.

Ethics declarations

Competing interests

SMS is a cofounder of Axerion Therapeutics, seeking to develop PrP- and NgR-based therapeutics.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhagat, S., Butler, S., Taylor, J. et al. Erasure of fear memories is prevented by Nogo Receptor 1 in adulthood. Mol Psychiatry 21, 1281–1289 (2016). https://doi.org/10.1038/mp.2015.179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.179

This article is cited by

Search

Quick links