Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Caspase-3-dependent cleavage of Akt modulates tau phosphorylation via GSK3β kinase: implications for Alzheimer’s disease

Abstract

The pathological hallmark of Alzheimer’s disease (AD) is accumulation of misfolded amyloid-β peptides and hyperphosphorylated tau protein in the brain. Increasing evidence suggests that serine-aspartyl proteases—caspases are activated in the AD brain. Previous studies identified a caspase-3 cleavage site within the amyloid-β precursor protein, and a caspase-3 cleavage of tau as the mechanisms involved in the development of Aβ and tau neuropathology, respectively. However, the potential role that caspase-3 could have on tau metabolism remains unknown. In the current studies, we provide experimental evidence that caspase-3 directly and specifically regulates tau phosphorylation, and demonstrate that this effect is mediated by the GSK3β kinase pathway via a caspase-3-dependent cleavage of the protein kinase B (also known as Akt). In addition, we confirm these results in vivo by using a transgenic mouse model of AD. Collectively, our findings demonstrate a new role for caspase-3 in the neurobiology of tau, and suggest that therapeutic strategies aimed at inhibiting this protease-dependent cleavage of Akt may prove beneficial in preventing tau hyperphosphorylation and subsequent neuropathology in AD and related tauopathies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Giannopoulos PG, Praticò D . Alzheimer’s disease. In: Colin R, Martin, Victor Reddy (eds). Diet and Nutrition in Dementia and Cognitive Decline. Chapter 2. Elsevier Publisher, 2015, pp 13–21.

    Chapter  Google Scholar 

  2. Gandy S . Lifelong management of amyloid beta metabolism to prevent Alzheimer’s disease. N Engl J Med 2012; 367: 864–866.

    Article  CAS  PubMed Central  Google Scholar 

  3. Chang HY, Yang X . Proteases for cell suicide: functions and regulation of caspases. Microbiol Mol Biol Rev 2000; 64: 821–846.

    Article  CAS  PubMed Central  Google Scholar 

  4. McLaughlin B, Hartnett KA, Erhardt JA, Legos JJ, White RF, Barone FC et al. Caspase 3 activation is essential for neuroprotection in preconditioning. Proc Natl Acad Sci USA 2003; 100: 715–720.

    Article  CAS  Google Scholar 

  5. Yang SY, Bolvin C, Sales KM, Fuller B, Seifalian AM, Winslet MC . IGF-I activates caspases 3/7, 8 and 9 but does not induce cell death in colorectal cancer cells. BMC Cancer 2009; 9: 1–12.

    Article  Google Scholar 

  6. Fernando P, Kelly JF, Balazsi K, Slack RS, Megeney LA . Caspase 3 activity is required for skeletal muscle differentiation. Proc Natl Acad Sci USA 2002; 99: 11025–11030.

    Article  CAS  Google Scholar 

  7. Launay S, Hermine O, Fontenay M, Kroemer G, Solary E, Garrido C . Vital functions for lethal caspases. Oncogene 2005; 24: 5137–5148.

    Article  CAS  Google Scholar 

  8. Sztiller-Sikorska M, Jakubowska J, Wozniak M, Stasiak M, Czyz M . A non-apoptotic function of caspase-3 in pharmacologically-induced differentiation of K562 cells. Br J Pharmacol 2009; 157: 1451–1462.

    Article  CAS  PubMed Central  Google Scholar 

  9. Zermati Y, Garrido C, Amsellem S, Fishelson S, Bouscary D, Valensi F et al. Caspase activation is required for terminal erythroid differentiation. J Exp Med 2001; 193: 247–254.

    Article  CAS  PubMed Central  Google Scholar 

  10. Aispuru GR, Aguirre MV, Aquino-Esperanza JA, Lettieri CN, Juaristi JA, Brandan NC . Erythroid expansion and survival in response to acute anemia stress: the role of EPO receptor, GATA-1, Bcl-xL and caspase-3. Cell Biol Int 2008; 32: 966–978.

    Article  CAS  Google Scholar 

  11. Gervais FG, Xu D, Robertson GS, Vaillancourt JP, Zhu Y, Huang J et al. Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell 1999; 97: 395–406.

    Article  CAS  Google Scholar 

  12. Rohn TT, Head E, Su JH, Anderson AJ, Bahr BA, Cotman CW et al. Correlation between caspase activation and neurofibrillary tangle formation in Alzheimer’s disease. Am J Pathol 2001; 158: 189–198.

    Article  CAS  PubMed Central  Google Scholar 

  13. Su JH, Zhao M, Anderson AJ, Srinivasan A, Cotman CW . Activated caspase-3 expression in Alzheimer’s and aged control brain: correlation with Alzheimer pathology. Brain Res 2001; 898: 350–357.

    Article  CAS  Google Scholar 

  14. Gastard MC, Troncoso JC, Koliatsos VE . Caspase activation in the limbic cortex of subjects with early Alzheimer’s disease. Ann Neurol 2003; 54: 393–398.

    Article  CAS  Google Scholar 

  15. Zhao M, Su J, Head E, Cotman CW . Accumulation of caspase cleaved amyloid precursor protein represents an early neurodegenerative event in aging and in Alzheimer's disease. Neurobiol Dis 2003; 14: 391–403.

    Article  CAS  Google Scholar 

  16. Ayala-Grosso C, Ng G, Roy S, Robertson GS . Caspase-cleaved amyloid precursor protein in Alzheimer's disease. Brain Pathol 2002; 12: 430–444.

    Article  CAS  Google Scholar 

  17. Chu J, Li JG, Joshi YB, Giannopoulos PF, Hoffman NE, Madesh M et al. Gamma secretase-activating protein is a substrate for caspase-3: implications for Alzheimer’s disease. Biol Psychiatry 2015; 77: 720–728.

    Article  CAS  Google Scholar 

  18. Rissman RA, Poon WW, Blurton-Jones M, Oddo S, Torp R, Vitek MP et al. Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest 2004; 114: 121–130.

    Article  CAS  PubMed Central  Google Scholar 

  19. Kolarova M, García-Sierra F, Bartos A, Ricny J, Ripova D . Structure and pathology of tau protein in Alzheimer disease. Int J Alzheimers Dis 2012; 2012: 731526.

    PubMed  PubMed Central  Google Scholar 

  20. Chu J, Praticò D . 5-Lipoxygenase as an endogenous modulator of amyloid-β formation in vivo. Ann Neurol 2011; 69: 34–46.

    Article  CAS  Google Scholar 

  21. Chu J, Lauretti E, Craige CP, Praticò D . Pharmacological modulation of GSAP reduces amyloid-ß levels and tau phosphorylation in a mouse model of Alzheimer's disease with plaques and tangles. J Alzheimers Dis 2014; 41: 729–737.

    Article  CAS  Google Scholar 

  22. Chu J, Giannopoulos PF, Ceballos-Diaz C, Golde TE, Praticò D . 5-Lipoxygenase gene transfer worsens memory, amyloid, and tau brain pathologies in a mouse model of Alzheimer disease. Ann Neurol 2012; 72: 442–454.

    Article  CAS  PubMed Central  Google Scholar 

  23. Giannopoulos PF, Chu J, Joshi YB, Sperow M, Li JG, Kirby LG et al. Gene knockout of 5-lipoxygenase rescues synaptic dysfunction and improves memory in the triple-transgenic model of Alzheimer’s disease. Mol Psychiatry 2014; 19: 511–518.

    Article  CAS  Google Scholar 

  24. Kishi T, Hirooka Y, Konno S, Ogawa K, Sunagawa K, Angiotensin II . Type 1 receptor–activated caspase-3 through ras/mitogen-activated protein kinase/extracellular signal-regulated kinase in the rostral ventrolateral medulla is involved in sympatho-excitation in stroke-prone spontaneously hypertensive rats. Hypertension 2010; 55: 291–297.

    Article  CAS  Google Scholar 

  25. Stepanichev MY, Kudryashova IV, Yakovlev AA, Onufriev MV, Khaspekov LG, Lyzhin AA et al. Central administration of a caspase inhibitor impairs shuttle-box performance in rats. Neuroscience 2005; 136: 579–591.

    Article  CAS  Google Scholar 

  26. Giannopoulos PF, Yash BJ, Chu J, Praticò D . The 12/15lipoxygenase is a modulator of Alzheimer’s-related tau pathology in vivo. Aging Cell 2013; 12: 1082–1090.

    Article  CAS  Google Scholar 

  27. Feng ZC, Donnelly L, Li J, Krishnamurthy M, Riopel M, Wang R . Inhibition of Gsk3β activity improves β-cell function in c-KitWv/+ male mice. Lab Invest 2012; 92: 543–555.

    Article  CAS  PubMed Central  Google Scholar 

  28. Bredesen DE, John V, Galvan V . Importance of the caspase cleavage site in amyloid-β protein precursor. J Alzheimers Dis 2010; 22: 57–63.

    Article  PubMed Central  Google Scholar 

  29. Kim Y, Choi H, Lee W, Park H, Kam TI, Hong SH et al. Caspase-cleaved tau exhibits rapid memory impairment associated with tau oligomers in a transgenic mouse model. Neurobiol Dis 2016; 87: 19–28.

    Article  CAS  Google Scholar 

  30. Troy CM, Jean YY . Caspases: therapeutic targets in neurologic disease. Neurotherapeutics 2015; 12: 42–48.

    Article  CAS  Google Scholar 

  31. D'Amelio M, Sheng M, Cecconi F . Caspase-3 in the central nervous system: beyond apoptosis. Trends Neurosci 2012; 35: 700–709.

    Article  CAS  Google Scholar 

  32. D'Amelio M, Cavallucci V, Middei S, Marchetti C, Pacioni S, Ferri A et al. Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer's disease. Nat Neurosci 2011; 14: 69–76.

    Article  CAS  Google Scholar 

  33. Del Campo M, Oliveira CR, Scheper W, Zwart R, Korth C, Müller-Schiffmann A et al. BRI2 ectodomain affects Aβ42 fibrillation and tau truncation in human neuroblastoma cells. Cell Mol Life Sci 2015; 72: 1599–1611.

    Article  CAS  Google Scholar 

  34. Reifert J, Hartung-Cranston D, Feinstein SC . Amyloid beta-mediated cell death of cultured hippocampal neurons reveals extensive Tau fragmentation without increased full-length tau phosphorylation. J Biol Chem 2011; 286: 20797–20811.

    Article  CAS  PubMed Central  Google Scholar 

  35. Endo H, Nito C, Kamada H, Nishi T, Chan PH . Activation of the Akt/GSK3beta signaling pathway mediated survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J Cereb Blood Flow Metab 2006; 26: 1479–1489.

    Article  CAS  Google Scholar 

  36. Franke TF, Kaplan DR, Cantley LC . PI3K: downstream AKT ion blocks apoptosis. Cell 1997; 88: 435–437.

    Article  CAS  Google Scholar 

  37. Franke TF, Kaplan DR, Cantley LC, Toker A . Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 1997; 275: 665–668.

    Article  CAS  Google Scholar 

  38. Cross DAE, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378: 785–789.

    Article  CAS  PubMed Central  Google Scholar 

  39. Brunet A, Datta SR, Greenberg ME . Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol 2001; 11: 297–305.

    Article  CAS  PubMed Central  Google Scholar 

  40. Lee CW, Lau KF, Miller CC, Shaw PC . Glycogen synthase kinase-3beta-mediated tau phosphorylation in cultured cell lines. Neuroreport 2003; 14: 257–260.

    Article  CAS  Google Scholar 

  41. Mercado-Gomez O, Hernadez-Fonseca K, Villavicencio-Quejeiro A, Massieu L, Chimal-Monroy J, Arias C . Inhibition of Wnt and PI3K signaling modulates GSK3-beta activity and induces morphological changes in cortical neurons: role of tau phosphorylation. Neurochem Res 2008; 33: 1599–1609.

    Article  CAS  Google Scholar 

  42. Cheng B, Martinez AA, Morado J, Scofield V, Roberts JL, Maffi SK . Retinoic acid protects against proteasome inhibition associated cell death in SH-SY5Y cells via the AKT pathway. Neurochem Int 2013; 62: 31–42.

    Article  CAS  Google Scholar 

  43. Verspurten J, Gevaert K, Declercq W, Vandenabeele P . Site predicting the cleavage of proteinase substrates. Trends Biochem Sci 2009; 34: 319–323.

    Article  CAS  Google Scholar 

  44. Jiang J, Wang ZH, Qu M, Gao D, Liu X-P, Zhu L-Q et al. Stimulation of EphB2 attenuates tau phosphorylation through PI3K-Akt-mediated inactivation of glycogen synthase kinase-3β. Sci Rep 2015; 5: 11765.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was in part supported by a grant from the Alzheimer Art Quilt Initiative and the Wanda Simone Endowment for Neuroscience.

Author contributions

JC and DP designed the experiments. JC and EL performed the experiments. JC and DP wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Praticò.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, J., Lauretti, E. & Praticò, D. Caspase-3-dependent cleavage of Akt modulates tau phosphorylation via GSK3β kinase: implications for Alzheimer’s disease. Mol Psychiatry 22, 1002–1008 (2017). https://doi.org/10.1038/mp.2016.214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.214

This article is cited by

Search

Quick links