Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Discovery and development of telaprevir: an NS3-4A protease inhibitor for treating genotype 1 chronic hepatitis C virus

Abstract

Infection with hepatitis C virus (HCV) is a major medical problem with over 170 million people infected worldwide. Substantial morbidity and mortality are associated with hepatic manifestations (cirrhosis and hepatocellular carcinoma), which develop with increasing frequency in people infected with HCV for more than 20 years. Less well known is the burden of HCV disease associated with extrahepatic manifestations (diabetes, B-cell proliferative disorders, depression, cognitive disorders, arthritis and Sjögren's syndrome). For patients infected with genotype 1 HCV, treatment with polyethylene glycol decorated interferon (peginterferon) α and ribavirin (PR) is associated with a low (40–50%) success rate, substantial treatment-limiting side effects and a long (48-week) duration of treatment. In the past 15 years, major scientific advances have enabled the development of new classes of HCV therapy, the direct-acting antiviral agents, also known as specifically targeted antiviral therapy for hepatitis C (STAT-C). In combination with PR, the HCV NS3-4A protease inhibitor telaprevir has recently been approved for treatment of genotype 1 chronic HCV in the United States, Canada, European Union and Japan. Compared with PR, telaprevir combination therapy offers significantly improved viral cure rates and the possibility of shortened treatment duration for diverse patient populations. Developers of innovative drugs have to blaze a new path with few validated sign posts to guide the way. Indeed, telaprevir's development was once put on hold because of its performance in a standard IC50 assay. Data from new hypotheses and novel experiments were required to justify further investment and reduce risk that the drug might fail in the clinic. In addition, the poor drug-like properties of telaprevir were a formidable hurdle, which the manufacturing and formulation teams had to overcome to make the drug. Finally, novel clinical trial designs were developed to improve efficacy and shorten treatment in parallel instead of sequentially. Lessons learned from the development of telaprevir suggest that makers of innovative medicines cannot rely solely on traditional drug discovery metrics, but must develop innovative, scientifically guided pathways for success.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Important research and commercial milestones in telaprevir development.
Figure 2: From natural substrate to peptidomimetic: highlights in telaprevir medicinal chemistry strategy.
Figure 3: Challenges in telaprevir formulation.
Figure 4: The role of telaprevir and PR in the treatment regimen.

Similar content being viewed by others

References

  1. Modi, A.A. & Liang, T.J. Hepatitis C: a clinical review. Oral Dis. 14, 10–14 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Neumann, A.U. et al. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 282, 103–107 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Centers for Disease Control and Prevention and Department of Health and Human Services. Hepatitis C fact sheet (CDC and HHS, 2010). http://www.cdc.gov/hepatitis/HCV/PDFs/HepCGeneralFactSheet.pdf

  4. Volk, M.L., Tocco, R., Saini, S. & Lok, A. Public health impact of antiviral therapy for hepatitis C in the United States. Hepatology 50, 1750–1755 (2009).

    Article  PubMed  Google Scholar 

  5. Mitchell, A.E., Colvin, H.M. & Palmer Beasley, R. Institute of Medicine recommendations for the prevention and control of hepatitis B and C. Hepatology 51, 729–733 (2010).

    Article  PubMed  Google Scholar 

  6. Colvin, H.M. & Mitchell, A.E. (eds.) Hepatitis and Liver Cancer: a National Strategy for Prevention and Control of Hepatitits B and C. (Committee on the Prevention and Control of Viral Hepatitis Infections, Institute of Medicine, National Academies Press, 2010).

    Google Scholar 

  7. Bonkovsky, H. & Woolley, J. Reduction of health-related quality of life in chronic hepatitis C and improvement with interferon therapy. Hepatology 29, 264–270 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Planas, R. et al. Natural history of decompensated hepatitis C virus-related cirrhosis. A study of 200 patients. J. Hepatol. 40, 823–830 (2004).

    Article  PubMed  Google Scholar 

  9. Pawlotsky, J.M. Therapy of hepatitis C: from empiricism to eradication. Hepatology 43, S207–S220 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Ghany, M.G., Strader, D.B., Thomas, D.L. & Seeff, L.B. Diagnosis, management, and treatment of hepatitis C: an update. Hepatology 49, 1335–1374 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Ferguson, M. Current therapies for chronic hepatitis C. Pharmacotherapy 31, 92–111 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Alter, M.J. Epidemiology of hepatitis C virus infection. World J. Gastroenterol. 13, 2436–2441 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Manns, M.P. et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet 358, 958–965 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Fried, M.W. et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N. Engl. J. Med. 347, 975–982 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Manns, M., Wedemeyer, H. & Cornberg, M. Treating viral hepatitis C: efficacy, side effects and complications. Gut 55, 1350–1359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pegasys (prescribing information) (Hoffmann-La Roche, Providence, RI, 2011). http://www.gene.com/gene/products/information/pegasys/pdf/pi.pdf

  17. Pegintron (prescribing information). (Merck & Co, Whitehouse Station, NJ, USA, 2011). http://www.spfiles.com/pipeg-intron.pdf

  18. Hadziyannis, S.J. et al. Peginterferon-alpha2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose. Ann. Intern. Med. 140, 346–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. McHutchison, J.G. et al. Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection. N. Engl. J. Med. 360, 1827–1838 (2009); erratum, 361, 1516 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Bacon, B.R. et al. Retreating chronic hepatitis C with daily interferon alfacon-1/ribavirin after nonresponse to pegylated interferon/ribavirin: DIRECT results. Hepatology 49, 1838–1846 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Jensen, D.M. et al. Re-treatment of patients with chronic hepatitis C who do not respond to peginterferon-a2b: a randomized trial. Ann. Intern. Med. 150, 528–540 (2009).

    Article  PubMed  Google Scholar 

  22. Poynard, T. et al. Peginterferon alfa-2b and ribavirin: effective in patients with hepatitis C who failed interferon alfa/ribavirin therapy. Gastroenterology 136, 1618–1628 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Veldt, B., Heathcote, J. & Wedmeyer, H. Sustained virologic response and clinical outcomes in patients with chronic hepatitis C and advanced fibrosis. Ann. Intern. Med. 147, 677–684 (2007).

    Article  PubMed  Google Scholar 

  24. Morgan, T.R. et al. Outcome of sustained virological responders and non-responders in the hepatitis C antiviral long-term treatment against cirrhosis (HALT-C) trial. Hepatology 50 Suppl, 357A–358A (2009).

    Google Scholar 

  25. Bruno, S. et al. Sustained virologic response prevents the development of esophageal varices in compensated, Child-Pugh class A hepatitis C virus–induced cirrhosis. A 12-year prospective follow-up study. Hepatology 51, 2069–2076 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Backus, L. et al. Impact of sustained virologic response to pegylated interferon/ribavirin on all-cause mortality by HCV genotype in a large real-world cohort: the US Department of Veterans Affairs' experience. Hepatology 52 Suppl, 428A (2010).

    Google Scholar 

  27. Lindenbach, B.D. & Rice, C.M. Flaviviridae: the viruses and their replication. in Field's Virology, ed. 4. (eds. Knipe, D.M. et al.) 991–1041 (Lippincott Williams & Wilkins, Philadelphia, 2001).

    Google Scholar 

  28. Lindenbach, B.D. & Rice, C.M. Unravelling hepatitis C virus replication: from genome to function. Nature 436, 933–938 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Incivek (US package insert) (Vertex Pharmaceuticals, 2011). http://pi.vrtx.com/files/uspi_telaprevir.pdf

  30. Incivek (Canada product monograph) (Vertex Pharmaceuticals, 2011). http://pi.vrtx.com/files/canadapm_telaprevir_en.pdf.

  31. Incivo (EU summary of product characteristics) (Tibotec, Beerse, Belgium, 2011). http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002313/WC500115529.pdf.

  32. Telavic (Japan package insert). (Mitsubishi Tanabe Pharma, Osaka, Japan, 2011). http://www.mt-pharma.co.jp/e/release/nr/2011/pdf/eMTPC110926_TLV.pdf

  33. Shatin, D., Schech, S.D., Patel, K. & McHutchison, J.G. Population-based hepatitis C surveillance and treatment in a national managed care organization. Am. J. Manag. Care 10, 250–256 (2004).

    PubMed  Google Scholar 

  34. Pyenson, B., Fitch, K. & Iwasaki, K. Consequences of Hepatitis C Virus (HCV): Costs of a Baby Boomer Epidemic of Liver Disease (Milliman, Inc., 2009).

    Google Scholar 

  35. Davis, G.L., Alter, M.J., El-Serag, H., Poynard, T. & Jennings, L.W. Aging of hepatitis C virus (HCV)-infected persons in the United States: a multiple cohort model of HCV prevalence and disease progression. Gastroenterology 138, 513–521 (2010).

    Article  PubMed  Google Scholar 

  36. Perni, R.B. & Kwong, A.D. Inhibitors of hepatitis C virus NS3.4A protease: an overdue line of therapy. Prog. Med. Chem. 39, 215–255 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Chary, A. & Holodniy, M. Recent advances in hepatitis C virus treatment: review of HCV protease inhibitor clinical trials. Rev. Recent Clin. Trials 5, 158–173 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Mani, N., Rao, B.G., Kieffer, T.L. & Kwong, A.D. Recent progress in the development of HCV protease inhibitors. in Antiviral Drug Strategies (ed. De Clercq, E.) 307–328 (Wiley-VCH, Weinheim, Germany, 2011).

    Chapter  Google Scholar 

  39. Morikawa, K. et al. Nonstructural protein 3–4A: the Swiss army knife of hepatitis C virus. J. Viral Hepat. 18, 305–315 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Reiser, M. & Timm, J. Serine protease inhibitors as anti-hepatitis C virus agents. Expert Rev. Anti Infect. Ther. 7, 537–547 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Chen, K. & Niroge, F. A review of HCV protease inhibitors. Curr. Opin. Investig. Drugs 10, 821–837 (2009).

    CAS  PubMed  Google Scholar 

  42. Swan, T. The Hepatitis C Treatment Report (Treatment Action Group, New York, 2011).

    Google Scholar 

  43. Vermehren, J. & Sarrazin, C. New HCV therapies on the horizon. Clin. Microbiol. Infect. 17, 122–134 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Gelman, A. & Glenn, J. Mixing the right hepatitis C inhibitor cocktail. Trends Mol. Med. 17, 34–46 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Yoshida, T., Kondoh, M. & Yagi, K. Promising targets for anti-hepatitis C virus agents. Curr. Med. Chem. 18, 1239–1244 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Delang, L., Coelmont, L. & Neyts, J. Antiviral therapy for hepatitis C virus: beyond the standard of care. Viruses 2, 826–866 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bartenschlager, R., Ahlborn-Laake, L., Yasargil, K., Mous, J. & Jacobsen, H. Substrate determinants for cleavage in cis and in trans by the hepatitis C virus NS3 proteinase. J. Virol. 69, 198–205 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kwong, A.D., Kim, J.L., Rao, G., Lipovsek, D. & Raybuck, S.A. Hepatitis C virus NS3/4A protease. Antiviral Res. 41, 67–84 (1999).

    CAS  PubMed  Google Scholar 

  49. Kim, J.L. et al. Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell 87, 343–355 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Love, R.A. et al. The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsin-like fold and a structural zinc binding site. Cell 87, 331–342 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Pasquo, A. et al. Rational design and functional expression of a constitutively active single-chain NS4A–NS3 proteinase. Fold. Des. 3, 433–441 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Taremi, S.S. et al. Construction, expression, and characterization of a novel fully activated recombinant single-chain hepatitis C virus protease. Protein Sci. 7, 2143–2149 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yao, N., Reichert, P., Taremi, S.S., Prosise, W.W. & Weber, P.C. Molecular views of the viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease-helicase. Structure 7, 1353–1363 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Bartenschlager, R. Hepatitis C virus replicons: potential role for drug development. Nat. Rev. Drug Discov. 1, 911–916 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Lohmann, V. et al. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285, 110–113 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Perni, R.B. et al. Preclinical profile of VX-950, a potent, selective, and orally bioavailable inhibitor of hepatitis C virus NS3–4A serine protease. Antimicrob. Agents Chemother. 50, 899–909 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grillot, A. et al. Discovery and development of telaprevir. in Antiviral Drugs: from Basic Discovery through Clinical Trials (ed., Kazmierski, W.) 209–224 (John Wiley & Sons, 2010.)

    Google Scholar 

  58. Kalkeri, G. et al. Expression of HCV protease in mouse liver results in liver injury which can be inhibited by VX-950, a Vertex HCV protease inhibitor. Hepatology 40 Suppl, 281A (2004).

    Google Scholar 

  59. Chen, S.H. & Tan, S.L. Discovery of small-molecule inhibitors of HCV NS3–4A protease as potential therapeutic agents against HCV infection. Curr. Med. Chem. 12, 2317–2342 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Lin, C., Kwong, A.D. & Perni, R.B. Discovery and development of VX-950, a novel, covalent, and reversible inhibitor of hepatitis C virus NS3.4A serine protease. Infect. Disord. Drug Targets 6, 3–16 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Perni, R.B. et al. Inhibitors of hepatitis C virus NS3-4A protease 1. Non-Charged tetrapeptide variants. Bioorg. Med. Chem. Lett. 13, 4059–4063 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Perni, R.B. et al. Inhibitors of hepatitis C virus NS3-4A protease 3. P2 Proline Variants. Bioorg. Med. Chem. Lett. 14, 1939–1942 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Perni, R.B. et al. Inhibitors of hepatitis C virus NS3-4A protease 2. Warhead SAR and optimization. Bioorg. Med. Chem. Lett. 14, 1441–1446 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Perni, R.B. et al. Inhibitors of hepatitis C virus NS3.4A protease. Effect of P4 capping groups on inhibitory potency and pharmacokinetics. Bioorg. Med. Chem. Lett. 17, 3406–3411 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Landro, J.A. et al. Mechanistic role of an NS4A peptide cofactor with the truncated NS3 protease of hepatitis C virus: elucidation of the NS4A stimulatory effect via kinetic analysis and inhibitor mapping. Biochemistry 36, 9340–9348 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Llinas-Brunet, M. et al. Peptide-based inhibitors of the hepatitis C virus serine protease. Bioorg. Med. Chem. Lett. 8, 1713–1718 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Steinkühler, C. et al. Product inhibition of the hepatitis C virus NS3 protease. Biochemistry 37, 8899–8905 (1998).

    Article  PubMed  Google Scholar 

  68. Yip, Y. et al. Discovery of a novel bicycloproline P2 bearing peptidyl alpha-ketoamide LY514962 as HCV protease inhibitor. Bioorg. Med. Chem. Lett. 14, 251–256 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Lin, K., Kwong, A.D. & Lin, C. Combination of a hepatitis C virus NS3–NS4A protease inhibitor and alpha interferon synergistically inhibits viral RNA replication and facilitates viral RNA clearance in replicon cells. Antimicrob. Agents Chemother. 48, 4784–4792 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tsantrizos, Y.S. et al. Macrocyclic inhibitors of the NS3 protease as potential therapeutic agents of hepatitis C virus infection. Angew. Chem. 42, 1355–1360 (2003).

    Article  Google Scholar 

  71. Lamarre, D. et al. An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature 426, 186–189 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Hinrichsen, H. et al. Short-term antiviral efficacy of BILN 2061, a hepatitis C virus serine protease inhibitor, in hepatitis C genotype 1 patients. Gastroenterology 127, 1347–1355 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Vanwolleghem, T. Ultra-rapid cardiotoxicity of the hepatitis C virus protease inhibitor BILN 2061 in the urokinase-type plasminogen activator mouse. Gastroenterology 133, 1144–1155 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Lin, K. et al. VX950: a tight binding HCV protease inhibitor with a superior sustained inhibitory response in HCV replicon cells. Hepatology 38 Suppl, 222 (2003).

    Article  Google Scholar 

  75. Lin, K., Perni, R.B., Kwong, A.D. & Lin, C. VX-950, a novel hepatitis C virus (HCV) NS3–4A protease inhibitor, exhibits potent antiviral activities in HCV replicon cells. Antimicrob. Agents Chemother. 50, 1813–1822 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lipinski, C.A., Lombardo, F., Dominy, B.W. & Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).

    Article  CAS  Google Scholar 

  77. Yu, L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv. Drug Deliv. Rev. 48, 27–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Anonymous. Stability testing of new drug substances and products (Q1A(R2) (International Conference on Harmonization Guidance, 2003). http://www.fda.gov/downloads/regulatoryinformation/guidances/ucm128204.pdf

  79. Reesink, H.W. et al. Rapid decline of viral RNA in hepatitis C patients treated with VX-950: a phase Ib, placebo-controlled, randomized study. Gastroenterology 131, 997–1002 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Imperiale, T.F., Said, A.T., Cummings, O.W. & Born, L.J. Need for validation of clinical decision aids: use of the AST/ALT ratio in predicting cirrhosis in chronic hepatitis C. Am. J. Gastroenterol. 95, 2328–2332 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Sarrazin, C. et al. Dynamic hepatitis C virus genotypic and phenotypic changes in patients treated with the protease inhibitor telaprevir. Gastroenterology 132, 1767–1777 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Forestier, N. et al. Antiviral activity of telaprevir (VX-950) and peginterferon alfa-2a in patients with hepatitis C. Hepatology 46, 640–648 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Kieffer, T.L. et al. Telaprevir and pegylated interferon-alpha-2a inhibit wild-type and resistant genotype 1 hepatitis C virus replication in patients. Hepatology 46, 631–639 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Lawitz, E. et al. Antiviral effects and safety of telaprevir, peginterferon alfa-2a, and ribavirin for 28 days in hepatitis C patients. J. Hepatol. 49, 163–169 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Hézode, C. et al. Telaprevir and peginterferon with or without ribavirin for chronic HCV infection. N. Engl. J. Med. 360, 1839–1850 (2009).

    Article  PubMed  Google Scholar 

  86. McHutchison, J. et al. Telaprevir for previously treated chronic HCV infection. N. Engl. J. Med. 362, 1292–1303; erratum, 362, 1647 (2009).

    Article  Google Scholar 

  87. Fried, M.W. Side effects of therapy of hepatitis C and their management. Hepatology 36, S237–S244 (2002).

    PubMed  Google Scholar 

  88. Pawlotsky, J.M. How does ribavirin improve interferon-alpha response rates in hepatitis C virus infection? J. Hepatol. 42, 951–953 (2005).

    Article  CAS  Google Scholar 

  89. Wedemeyer, H., Caselmann, W.H. & Manns, M.P. Combination therapy of chronic hepatitis C: an important step but not the final goal! J. Hepatol. 29, 1010–1014 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Main, J., McCarron, B. & Thomas, H.C. Treatment of chronic viral hepatitis. Antivir. Chem. Chemother. 9, 449–460 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Kieffer, T., Kwong, A. & Picchio, G. Viral resistance to specifically targeted antiviral therapies for hepatitis C (STAT-Cs). J. Antimicrob. Chemother. 65, 202–212 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Lin, C. et al. In vitro studies of cross-resistance mutations against two hepatitis C virus serine protease inhibitors, VX-950 and BILN 2061. J. Biol. Chem. 280, 36784–36791 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Lin, C. et al. In vitro resistance studies of hepatitis C virus serine protease inhibitors, VX-950 and BILN 2061: structural analysis indicates different resistance mechanisms. J. Biol. Chem. 279, 17508–17514 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Zhou, Y. et al. Phenotypic characterization of resistant Val36 variants of hepatitis C virus NS3–4A serine protease. Antimicrob. Agents Chemother. 52, 110–120 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Zhou, Y. et al. Phenotypic and structural analyses of hepatitis C virus NS3 protease Arg155 variants: sensitivity to telaprevir (VX-950) and interferon alpha. J. Biol. Chem. 282, 22619–22628 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Zeuzem, S. et al. Long-term follow-up of patients with chronic hepatitis C treated with telaprevir in combination with peginterferon alfa-2a and ribavirin: interim analysis of the EXTEND study. Hepatology 52, 436A (2010).

    Google Scholar 

  97. Siliciano, J.D. & Siliciano, R.F. A long-term latent reservoir for HIV-1: discovery and clinical implications. J. Antimicrob. Chemother. 54, 6–9 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Bartels, D.J. et al. Natural prevalence of hepatitis C virus variants with decreased sensitivity to NS3.4A protease inhibitors in treatment-naive subjects. J. Infect. Dis. 198, 800–807 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Kieffer, T. et al. Clinical virology results from telaprevir Phase 3 study ADVANCE. Hepatology 52 Suppl, 879A (2010).

    Google Scholar 

  100. Adiwijaya, B.S. et al. Rapid decrease of wild-type hepatitis C virus on telaprevir treatment. Antivir. Ther. 14, 591–595 (2009).

    CAS  PubMed  Google Scholar 

  101. Adiwijaya, B.S. et al. A multi-variant, viral dynamic model of genotype 1 HCV to assess the in vivo evolution of protease-inhibitor resistant variants. PLOS Comput. Biol. 6, e1000745 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Jacobson, I.M. et al. Telaprevir for previously untreated chronic hepatitis C virus infection. N. Engl. J. Med. 364, 2405–2416 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Sherman, K.E. et al. Response-guided telaprevir combination treatment for hepatitis C virus infection. N. Engl. J. Med. 365, 1014–1024 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Zeuzem, S. et al. Telaprevir for retreatment of HCV infection. N. Engl. J. Med. 364, 2417–2428 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Kieffer, T. et al. Clinical virology results from telaprevir phase 3 study ADVANCE. Hepatology 52 Suppl, 879A (2010).

    Google Scholar 

  106. Dusheiko, G.M. et al. Telaprevir in combination with peginterferon alfa-2a and ribavirin increased sustained virologic response rates in treatment-naive patients regardless of race or ethnicity. J. Hepatol. 54 Suppl 1, S167–S168 (2011).

    Article  Google Scholar 

  107. Marcellin, P. et al. Sustained virologic response rates and viral resistance profiles were similar in patients treated with a telaprevir-based regimen regardless of liver fibrosis stage. J. Hepatol. 54 Suppl 1, 1348A (2011).

    Google Scholar 

  108. Copegus (prescribing information) (Hoffmann-La Roche, Providence, RI, 2010). http://www.gene.com/gene/products/information/pegasys/pdf/copegus_pi.pdf

  109. Ghany, M.G., Nelson, D.R., Strader, D.B., Thomas, D.L. & Seeff, L.B. An update on treatment of genotype 1 chronic hepatitis C virus infection: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology, 54, 1433–1444 (2011).

    Article  PubMed  Google Scholar 

  110. Choo, Q.L. et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359–362 (1989).

    Article  CAS  PubMed  Google Scholar 

  111. Yao, N. et al. Structure of the hepatitis C virus RNA helicase domain. Nat. Struct. Biol. 4, 463–467 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Bressanelli, S. et al. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Proc. Natl. Acad. Sci. USA 96, 13034–13039 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Egan, W.J., Merz, K.M. Jr. & Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 43, 3867–3877 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Muir, A. et al. Retreatment with telaprevir combination therapy in hepatitis C patients with well-characterized prior treatment response. Hepatology published online, doi:10.1002/hep.24549 (24 August 2011).

  115. Marcellin, P. et al. Telaprevir is effective given every 8 or 12 hours with ribavirin and peginterferon alfa-2a or -2b to patients with chronic hepatitis C. Gastroenterology 140, 459–468 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Gentile, I., Viola, C., Borgia, F., Castaldo, G. & Borgia, G. Telaprevir: a promising protease inhibitor for the treatment of hepatitis C virus infection. Curr. Med. Chem. 16, 1115–1121 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Hoofnagle, J.H. A step forward in therapy for hepatitis C. N. Engl. J. Med. 360, 1899–1901 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Weisberg, I.S. & Jacobson, I.M. Telaprevir: hope on the horizon, getting closer. Clin. Liver Dis. 13, 441–452 (2009).

    Article  PubMed  Google Scholar 

  119. Hofmann, W.P. & Zeuzem, S. A new standard of care for the treatment of chronic HCV infection. Nat. Rev. Gastroenterol. Hepatol. 8, 257–264 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Nelson, D.R. The role of triple therapy with protease inhibitors in hepatitis C virus genotype 1 naive patients. Liver Int. 31, 53–57 (2011).

    Article  PubMed  Google Scholar 

  121. Antiviral Drugs Advisory Committee. Telaprevir 375-mg film-coated tablet for the treatment of genotype 1 chronic hepatitis C: briefing document. NDA 201–917. (2011). (Cambridge, MA, Vertex Pharmaceuticals Incorporated. 4–28–2011). <http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/AntiviralDrugsAdvisoryCommittee/UCM252562.pdf>

Download references

Acknowledgements

We would like to thank all patients, study coordinators, nurses and investigators of the telaprevir clinical trials program. We thank the contract manufacturing organizations who contributed to the development and manufacturing of drug substance and drug product. We thank former and current Vertex and Tibotec employees who contributed to telaprevir development. We would like to thank T. Kieffer, J. Kirk and B.G. Rao for assistance with figure preparation; K. Stephan and S. Wu for medical writing and editorial coordination support; and V. Philippon for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann D Kwong.

Ethics declarations

Competing interests

All authors are employees and stock owners of Vertex Pharmaceuticals, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwong, A., Kauffman, R., Hurter, P. et al. Discovery and development of telaprevir: an NS3-4A protease inhibitor for treating genotype 1 chronic hepatitis C virus. Nat Biotechnol 29, 993–1003 (2011). https://doi.org/10.1038/nbt.2020

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2020

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research