Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle

Abstract

The budding yeast protein Kip3p is a member of the conserved kinesin-8 family of microtubule motors, which are required for microtubule–cortical interactions, normal spindle assembly and kinetochore dynamics. Here, we demonstrate that Kip3p is both a plus end-directed motor and a plus end-specific depolymerase — a unique combination of activities not found in other kinesins. The ATPase activity of Kip3p was activated by both microtubules and unpolymerized tubulin. Furthermore, Kip3p in the ATP-bound state formed a complex with unpolymerized tubulin. Thus, motile kinesin-8s may depolymerize microtubules by a mechanism that is similar to that used by non-motile kinesin-13 proteins. Fluorescent speckle analysis established that, in vivo, Kip3p moved toward and accumulated on the plus ends of growing microtubules, suggesting that motor activity brings Kip3p to its site of action. Globally, and more dramatically on cortical contact, Kip3p promoted catastrophes and pausing, and inhibited microtubule growth. These findings explain the role of Kip3p in positioning the mitotic spindle in budding yeast and potentially other processes controlled by kinesin-8 family members.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kip3p is a motor protein exhibiting plus-end tracking behaviour.
Figure 2: Kip3p is a plus end-directed motor.
Figure 3: Plus end-specific depolymerase activity of Kip3p.
Figure 4: Kip3p has tubulin dimer-activated ATPase activity and forms a nucleotide-dependent complex with tubulin dimers.
Figure 5: Normal microtubule orientation and capture–shrinkage in G1–S kip3Δ cells.
Figure 6: Kip3p is required to position mitotic spindles as it is a critical regulator of the length of cortically attached microtubules.

Similar content being viewed by others

References

  1. Nogales, E. Structural insights into microtubule function. Annu. Rev. Biochem. 69, 277–302 (2000).

    Article  CAS  Google Scholar 

  2. Sharp, D. J., Rogers, G. C. & Scholey, J. M. Roles of motor proteins in building microtubule-based structures: a basic principle of cellular design. Biochim. Biophys. Acta 1496, 128–141 (2000).

    Article  CAS  Google Scholar 

  3. Busch, K. E., Hayles, J., Nurse, P. & Brunner, D. Tea2p kinesin is involved in spatial microtubule organization by transporting tip1p on microtubules. Dev. Cell 6, 831–843 (2004).

    Article  CAS  Google Scholar 

  4. Carvalho, P., Gupta, M. L., Jr., Hoyt, M. A. & Pellman, D. Cell cycle control of kinesin-mediated transport of Bik1 (CLIP-170) regulates microtubule stability and dynein activation. Dev. Cell 6, 815–829 (2004).

    Article  CAS  Google Scholar 

  5. Moore, A. & Wordeman, L. The mechanism, function and regulation of depolymerizing kinesins during mitosis. Trends Cell Biol. 14, 537–546 (2004).

    Article  CAS  Google Scholar 

  6. Endow, S. A. et al. Yeast Kar3 is a minus-end microtubule motor protein that destabilizes microtubules preferentially at the minus ends. EMBO J. 13, 2708–2713 (1994).

    Article  CAS  Google Scholar 

  7. Sproul, L. R., Anderson, D. J., Mackey, A. T., Saunders, W. S. & Gilbert, S. P. Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends. Curr. Biol. 15, 1420–1427 (2005).

    Article  CAS  Google Scholar 

  8. Cottingham, F. R. & Hoyt, M. A. Mitotic spindle positioning in Saccharomyces cerevisiae is accomplished by antagonistically acting microtubule motor proteins. J. Cell. Biol. 138, 1041–1053 (1997).

    Article  CAS  Google Scholar 

  9. DeZwaan, T. M., Ellingson, E., Pellman, D. & Roof, D. M. Kinesin-related KIP3 of Saccharomyces cerevisiae is required for a distinct step in nuclear migration. J. Cell. Biol. 138, 1023–1040 (1997).

    Article  CAS  Google Scholar 

  10. Miller, R. K. et al. The kinesin-related proteins, Kip2p and Kip3p, function differently in nuclear migration in yeast. Mol. Biol. Cell 9, 2051–2068 (1998).

    Article  CAS  Google Scholar 

  11. West, R. R., Malmstrom, T., Troxell, C. L. & McIntosh, J. R. Two related kinesins, klp5+ and klp6+, foster microtubule disassembly and are required for meiosis in fission yeast. Mol. Biol. Cell 12, 3919–3932 (2001).

    Article  CAS  Google Scholar 

  12. Garcia, M. A., Koonrugsa, N. & Toda, T. Two kinesin-like Kin I family proteins in fission yeast regulate the establishment of metaphase and the onset of anaphase A. Curr. Biol. 12, 610–621 (2002).

    Article  CAS  Google Scholar 

  13. Gatt, M. K. et al. Klp67A destabilises pre-anaphase microtubules but subsequently is required to stabilise the central spindle. J. Cell Sci. 118, 2671–2682 (2005).

    Article  CAS  Google Scholar 

  14. Goshima, G. & Vale, R. D. The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line. J. Cell Biol. 162, 1003–1016 (2003).

    Article  CAS  Google Scholar 

  15. Goshima, G., Wollman, R., Stuurman, N., Scholey, J. M. & Vale, R. D. Length control of the metaphase spindle. Curr. Biol. 15, 1979–1988 (2005).

    Article  CAS  Google Scholar 

  16. Pereira, A. J., Dalby, B., Stewart, R. J., Doxsey, S. J. & Goldstein, L. S. Mitochondrial association of a plus end-directed microtubule motor expressed during mitosis in Drosophila. J. Cell Biol. 136, 1081–1090 (1997).

    Article  CAS  Google Scholar 

  17. Rischitor, P. E., Konzack, S. & Fischer, R. The Kip3-like kinesin KipB moves along microtubules and determines spindle position during synchronized mitoses in Aspergillus nidulans hyphae. Eukaryot. Cell 3, 632–645 (2004).

    Article  CAS  Google Scholar 

  18. Tytell, J. D. & Sorger, P. K. Analysis of kinesin motor function at budding yeast kinetochores. J. Cell Biol. 172, 861–874 (2006).

    Article  CAS  Google Scholar 

  19. Zhu, C. et al. Functional analysis of human microtubule-based motor proteins, the kinesins and dyneins, in mitosis/cytokinesis using RNA interference. Mol. Biol. Cell 16, 3187–3199 (2005).

    Article  CAS  Google Scholar 

  20. Miki, H., Okada, Y. & Hirokawa, N. Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol. 15, 467–476 (2005).

    Article  CAS  Google Scholar 

  21. Severin, F., Habermann, B., Huffaker, T. & Hyman, T. Stu2 promotes mitotic spindle elongation in anaphase. J. Cell Biol. 153, 435–442 (2001).

    Article  CAS  Google Scholar 

  22. Ogawa, T., Nitta, R., Okada, Y. & Hirokawa, N. A common mechanism for microtubule destabilizers-M type kinesins stabilize curling of the protofilament using the class-specific neck and loops. Cell 116, 591–602 (2004).

    Article  CAS  Google Scholar 

  23. Shipley, K. et al. Structure of a kinesin microtubule depolymerization machine. EMBO J. 23, 1422–1432 (2004).

    Article  CAS  Google Scholar 

  24. Cottingham, F. R., Gheber, L., Miller, D. L. & Hoyt, M. A. Novel roles for Saccharomyces cerevisiae mitotic spindle motors. J. Cell Biol. 147, 335–350 (1999).

    Article  CAS  Google Scholar 

  25. Straight, A. F., Sedat, J. W. & Murray, A. W. Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast. J. Cell Biol. 143, 687–694 (1998).

    Article  CAS  Google Scholar 

  26. Waterman-Storer, C. M., Desai, A., Bulinski, J. C. & Salmon, E. D. Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells. Curr. Biol. 8, 1227–1230 (1998).

    Article  CAS  Google Scholar 

  27. Akhmanova, A. & Hoogenraad, C. C. Microtubule plus-end-tracking proteins: mechanisms and functions. Curr. Opin. Cell Biol. 17, 47–54 (2005).

    Article  CAS  Google Scholar 

  28. Howard, J. & Hyman, A. A. Preparation of marked microtubules for the assay of the polarity of microtubule-based motors by fluorescence microscopy. Methods Cell Biol. 39, 105–113 (1993).

    Article  CAS  Google Scholar 

  29. Hyman, A. A., Salser, S., Drechsel, D. N., Unwin, N. & Mitchison, T. J. Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol. Biol. Cell 3, 1155–1167 (1992).

    Article  CAS  Google Scholar 

  30. Desai, A., Verma, S., Mitchison, T. J. & Walczak, C. E. Kin I kinesins are microtubule-destabilizing enzymes. Cell 96, 69–78 (1999).

    Article  CAS  Google Scholar 

  31. Hunter, A. W. et al. The kinesin-related protein MCAK is a microtubule depolymerase that forms an ATP-hydrolyzing complex at microtubule ends. Mol. Cell 11, 445–457 (2003).

    Article  CAS  Google Scholar 

  32. Liakopoulos, D., Kusch, J., Grava, S., Vogel, J. & Barral, Y. Asymmetric loading of Kar9 onto spindle poles and microtubules ensures proper spindle alignment. Cell 112, 561–574 (2003).

    Article  CAS  Google Scholar 

  33. Pearson, C. G. & Bloom, K. Dynamic microtubules lead the way for spindle positioning. Nature Rev. Mol. Cell Biol. 5, 481–492 (2004).

    Article  CAS  Google Scholar 

  34. Adames, N. R. & Cooper, J. A. Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J. Cell Biol. 149, 863–874 (2000).

    Article  CAS  Google Scholar 

  35. Maddox, P. S., Stemple, J. K., Satterwhite, L., Salmon, E. D. & Bloom, K. The minus end-directed motor Kar3 is required for coupling dynamic microtubule plus ends to the cortical shmoo tip in budding yeast. Curr. Biol. 13, 1423–1428 (2003).

    Article  CAS  Google Scholar 

  36. Brunner, D. & Nurse, P. CLIP170-like tip1p spatially organizes microtubular dynamics in fission yeast. Cell 102, 695–704 (2000).

    Article  CAS  Google Scholar 

  37. Tran, P. T., Marsh, L., Doye, V., Inoue, S. & Chang, F. A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J. Cell Biol. 153, 397–411 (2001).

    Article  CAS  Google Scholar 

  38. Komarova, Y. A., Vorobjev, I. A. & Borisy, G. G. Life cycle of MTs: persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary. J. Cell Sci. 115, 3527–3539 (2002).

    CAS  Google Scholar 

  39. Bringmann, H. et al. A kinesin-like motor inhibits microtubule dynamic instability. Science 303, 1519–1522 (2004).

    Article  CAS  Google Scholar 

  40. Mennella, V. et al. Functionally distinct kinesin-13 family members cooperate to regulate microtubule dynamics during interphase. Nature Cell Biol. 7, 235–245 (2005).

    Article  CAS  Google Scholar 

  41. Moore, A. T. et al. MCAK associates with the tips of polymerizing microtubules. J. Cell Biol. 169, 391–397 (2005).

    Article  CAS  Google Scholar 

  42. Wadsworth, P. Regional regulation of microtubule dynamics in polarized, motile cells. Cell Motil. Cytoskeleton 42, 48–59 (1999).

    Article  CAS  Google Scholar 

  43. Wittmann, T., Bokoch, G. M. & Waterman-Storer, C. M. Regulation of leading edge microtubule and actin dynamics downstream of Rac1. J. Cell Biol. 161, 845–851 (2003).

    Article  CAS  Google Scholar 

  44. Labbe, J. C., Maddox, P. S., Salmon, E. D. & Goldstein, B. PAR proteins regulate microtubule dynamics at the cell cortex in C. elegans. Curr. Biol. 13, 707–714 (2003).

    Article  CAS  Google Scholar 

  45. Kline-Smith, S. L. & Walczak, C. E. The microtubule-destabilizing kinesin XKCM1 regulates microtubule dynamic instability in cells. Mol. Biol. Cell 13, 2718–2731 (2002).

    Article  CAS  Google Scholar 

  46. Rose, M. D., Winston, F. & Hieter, P. Methods in Yeast Genetics (Cold Spring Harbor Laboratory Press, 1990).

    Google Scholar 

  47. Hyman, A. et al. Preparation of modified tubulins. Methods Enzymol. 196, 478–485 (1991).

    Article  CAS  Google Scholar 

  48. Paschal, B. M. & Vallee, R. B. Microtubule and axoneme gliding assays for force production by microtubule motor proteins. Methods Cell Biol. 39, 65–74 (1993).

    Article  CAS  Google Scholar 

  49. Huang, T. G. & Hackney, D. D. Drosophila kinesin minimal motor domain expressed in Escherichia coli. Purification and kinetic characterization. J. Biol. Chem. 269, 16493–16501 (1994).

    CAS  PubMed  Google Scholar 

  50. Tirnauer, J. S., O'Toole, E., Berrueta, L., Bierer, B. E. & Pellman, D. Yeast Bim1p promotes the G1-specific dynamics of microtubules. J. Cell Biol. 145, 993–1007 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to K. Bloom, J. Huff, A. Murray, R. Ohi and A. Straight for providing reagents. We thank S. Gilbert, T. Mitchison, H. Sosa and members of the Pellman lab for discussion, and S. Buttery, N. Chandhok, S. Gilbert, M. Guillet and S. Yoshida for comments on the manuscript. M. Gupta was supported by a postdoctoral fellowship from the American Cancer Society (ACS; PF-05-025-01-CCG). D. Pellman was supported by a National Institutes of Health (NIH) grant (GM R0161345).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pellman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3 and Supplementary Methods (PDF 1194 kb)

Supplementary Information

Supplementary Movie 1 (MOV 230 kb)

Supplementary Information

Supplementary Movie 2 (MOV 1683 kb)

Supplementary Information

Supplementary Movie 3 (MOV 184 kb)

Supplementary Information

Supplementary Movie 4 (MOV 363 kb)

Supplementary Information

Supplementary Movie 5 (MOV 842 kb)

Supplementary Information

Supplementary Movie 6 (MOV 790 kb)

Supplementary Information

Supplementary Movie 7 (MOV 273 kb)

Supplementary Information

Supplementary Movie 8 (MOV 509 kb)

Supplementary Information

Supplementary Movie 9 (MOV 368 kb)

Supplementary Information

Supplementary Movie 10 (MOV 659 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, M., Carvalho, P., Roof, D. et al. Plus end-specific depolymerase activity of Kip3, a kinesin-8 protein, explains its role in positioning the yeast mitotic spindle. Nat Cell Biol 8, 913–923 (2006). https://doi.org/10.1038/ncb1457

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1457

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing