Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation

Abstract

The serine/threonine kinase human Pim1 (hereafter PIM1) cooperates with human c-Myc (hereafter MYC) in cell cycle progression and tumorigenesis. However, the nature of this cooperation is still unknown. Here we show that, after stimulation with growth factor, PIM1 forms a complex with the dimer of MYC with MAX (Myc-associated factor X) via the MYC BoxII (MBII) domain. MYC recruits PIM1 to the E boxes of the MYC-target genes FOSL1 (FRA-1) and ID2, and PIM1 phosphorylates serine 10 of histone H3 (H3S10) on the nucleosome at the MYC-binding sites, contributing to their transcriptional activation. MYC and PIM1 colocalize at sites of active transcription, and expression profile analysis revealed that PIM1 contributes to the regulation of 20% of the MYC-regulated genes. Moreover, PIM1-dependent H3S10 phosphorylation contributes to MYC transforming capacity. These results establish a new function for PIM1 as a MYC cofactor that phosphorylates the chromatin at MYC-target loci and suggest that nucleosome phosphorylation, at E boxes, contributes to MYC-dependent transcriptional activation and cellular transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PIM1 phosphorylates H3S10 on the nucleosome.
Figure 2: PIM1 forms a complex with MYC.
Figure 3: PIM1 colocalizes with H3S10ph, active chromatin and MYC.
Figure 4: PIM1 associates with chromatin at the FOSL1 enhancer.
Figure 5: PIM1 mediates H3S10 phosphorylation and contributes to FOSL1 transcription.
Figure 6: PIM1 phosphorylates histone H3 in a MYC-dependent manner.
Figure 7: PIM1 is required for the transcriptional activation of FOSL1 and ID2.
Figure 8: PIM1 contributes to MYC-dependent transformation.

Similar content being viewed by others

References

  1. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  Google Scholar 

  2. Berger, S. L. Histone modifications in transcriptional regulation. Curr. Opin. Genet. Dev. 12, 142–148 (2002).

    Article  CAS  Google Scholar 

  3. Cheung, P., Allis, C. D. & Sassone-Corsi, P. Signaling to chromatin through histone modifications. Cell 103, 263–271 (2000).

    Article  CAS  Google Scholar 

  4. Nowak, S. J. & Corces, V. G. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet. 20, 214–220 (2004).

    Article  CAS  Google Scholar 

  5. Thomson, S., Mahadevan, L. C. & Clayton, A. L. MAP kinase-mediated signalling to nucleosomes and immediate-early gene induction. Semin. Cell Dev. Biol. 10, 205–214 (1999).

    Article  CAS  Google Scholar 

  6. Sassone-Corsi, P. et al. Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285, 886–891 (1999).

    Article  CAS  Google Scholar 

  7. Soloaga, A. et al. MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J. 22, 2788–2797 (2003).

    Article  CAS  Google Scholar 

  8. Yamamoto, Y., Verma, U. N., Prajapati, S., Kwak, Y. T. & Gaynor, R. B. Histone H3 phosphorylation by IKK-α is critical for cytokine-induced gene expression. Nature 423, 655–659 (2003).

    Article  CAS  Google Scholar 

  9. Anest, V. et al. A nucleosomal function for IκB kinase-α in NF-κB-dependent gene expression. Nature 423, 659–663 (2003).

    Article  CAS  Google Scholar 

  10. Cuypers, H. T. et al. Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell 37, 141–150 (1984).

    Article  CAS  Google Scholar 

  11. Zippo, A., De Robertis, A., Bardelli, M., Galvagni, F. & Oliviero, S. Identification of Flk-1-target genes in vasculogenesis: Pim-1 is required for endothelial and mural cell differentiation in vitro. Blood 103, 4536–4544 (2004).

    Article  CAS  Google Scholar 

  12. van Lohuizen, M. et al. Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell 56, 673–682 (1989).

    Article  CAS  Google Scholar 

  13. van Lohuizen, M. et al. Identification of cooperating oncogenes in E μ-myc transgenic mice by provirus tagging. Cell 65, 737–752 (1991).

    Article  CAS  Google Scholar 

  14. Verbeek, S. et al. Mice bearing the E μ-myc and E μ-pim-1 transgenes develop pre-B-cell leukemia prenatally. Mol. Cell. Biol. 11, 1176–1179 (1991).

    Article  CAS  Google Scholar 

  15. Wang, Z. et al. Pim-1: a serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis. J. Vet. Sci. 2, 167–179 (2001).

    Article  CAS  Google Scholar 

  16. Ellwood-Yen, K. et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4, 223–238 (2003).

    Article  CAS  Google Scholar 

  17. Amati, B., Alevizopoulos, K. & Vlach, J. Myc and the cell cycle. Frontiers Biosci. 3, d250–68 (1998).

    Article  CAS  Google Scholar 

  18. Grandori, C., Cowley, S. M., James, L. P. & Eisenman, R. N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol. 16, 653–699 (2000).

    Article  CAS  Google Scholar 

  19. Levens, D. L. Reconstructing MYC. Genes Dev. 17, 1071–1077 (2003).

    Article  CAS  Google Scholar 

  20. Murphy, M. J., Wilson, A. & Trumpp, A. More than just proliferation: Myc function in stem cells. Trends Cell Biol. 15, 128–137 (2005).

    Article  CAS  Google Scholar 

  21. Grandori, C. et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nature Cell Biol. 7, 311–318 (2005).

    Article  CAS  Google Scholar 

  22. Arabi, A. et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nature Cell Biol. 7, 303–310 (2005).

    Article  CAS  Google Scholar 

  23. Trumpp, A. et al. c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 414, 768–773 (2001).

    Article  CAS  Google Scholar 

  24. Adhikary, S. & Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nature Rev. Mol. Cell Biol. 6, 635–645 (2005).

    Article  CAS  Google Scholar 

  25. McMahon, S. B., Van Buskirk, H. A., Dugan, K. A., Copeland, T. D. & Cole, M. D. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94, 363–374 (1998).

    Article  CAS  Google Scholar 

  26. Osborne, C. S. et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nature Genet. 36, 1065–1071 (2004).

    Article  CAS  Google Scholar 

  27. Schuhmacher, M. et al. The transcriptional program of a human B cell line in response to Myc. Nucleic Acids Res. 29, 397–406 (2001).

    Article  CAS  Google Scholar 

  28. Fernandez, P. C. et al. Genomic targets of the human c-Myc protein. Genes Dev. 17, 1115–1129 (2003).

    Article  CAS  Google Scholar 

  29. Bergers, G., Graninger, P., Braselmann, S., Wrighton, C. & Busslinger, M. Transcriptional activation of the Fra-1 gene by AP-1 is mediated by regulatory sequences in the first intron. Mol. Cell. Biol. 15, 3748–3758 (1995).

    Article  CAS  Google Scholar 

  30. Adiseshaiah, P., Peddakama, S., Zhang, Q., Kalvakolanu, D. V. & Reddy, S. P. Mitogen regulated induction of FRA-1 proto-oncogene is controlled by the transcription factors binding to both serum and TPA response elements. Oncogene 24, 4193–4205 (2005).

    Article  CAS  Google Scholar 

  31. Blackwell, T. K. et al. Binding of myc proteins to canonical and noncanonical DNA sequences. Mol. Cell. Biol. 13, 5216–5224 (1993).

    Article  CAS  Google Scholar 

  32. Lasorella, A., Noseda, M., Beyna, M., Yokota, Y. & Iavarone, A. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407, 592–598 (2000).

    Article  CAS  Google Scholar 

  33. Zeller, K. I. et al. Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc. Natl Acad. Sci. USA 103, 17834–17839 (2006).

    Article  CAS  Google Scholar 

  34. Schuhmacher, M. et al. Control of cell growth by c-Myc in the absence of cell division. Curr. Biol. 9, 1255–1258 (1999).

    Article  CAS  Google Scholar 

  35. Pajic, A. et al. Cell cycle activation by c-myc in a Burkitt lymphoma model cell line. Int. J. Cancer 87, 787–793 (2000).

    Article  CAS  Google Scholar 

  36. Eilers, M., Picard, D., Yamamoto, K. R. & Bishop, J. M. Chimaeras of Myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature 340, 66–68 (1989).

    Article  CAS  Google Scholar 

  37. Kanno, T. et al. Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol. Cell 13, 33–43 (2004).

    Article  CAS  Google Scholar 

  38. Barratt, M. J., Hazzalin, C. A., Cano, E. & Mahadevan, L. C. Mitogen-stimulated phosphorylation of histone H3 is targeted to a small hyperacetylation-sensitive fraction. Proc. Natl Acad. Sci. USA 91, 4781–4785 (1994).

    Article  CAS  Google Scholar 

  39. Cheung, P. et al. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5, 905–915 (2000).

    Article  CAS  Google Scholar 

  40. Clayton, A. L., Rose, S., Barratt, M. J. & Mahadevan, L. C. Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J. 19, 3714–3726 (2000).

    Article  CAS  Google Scholar 

  41. Guccione, E. et al. Myc-binding-site recognition in the human genome is determined by chromatin context. Nature Cell Biol. 8, 764–770 (2006).

    Article  CAS  Google Scholar 

  42. Nowak, S. J. & Corces, V. G. Phosphorylation of histone H3 correlates with transcriptionally active loci. Genes Dev. 14, 3003–3013 (2000).

    Article  CAS  Google Scholar 

  43. Lefebvre, B., Ozato, K. & Lefebvre, P. Phosphorylation of histone H3 is functionally linked to retinoic acid receptor beta promoter activation. EMBO Rep. 3, 335–340 (2002).

    Article  CAS  Google Scholar 

  44. Cole, M. D. & McMahon, S. B. The Myc oncoprotein: a critical evaluation of transactivation and target gene regulation. Oncogene 18, 2916–2924 (1999).

    Article  CAS  Google Scholar 

  45. Caretti, G., Motta, M. C. & Mantovani, R. NF-Y associates with H3-H4 tetramers and octamers by multiple mechanisms. Mol. Cell. Biol. 19, 8591–8603 (1999).

    Article  CAS  Google Scholar 

  46. Salameh, A., Galvagni, F., Bardelli, M., Bussolino, F. & Oliviero, S. Direct recruitment of CRK and GRB2 to VEGFR-3 induces proliferation, migration, and survival of endothelial cells through the activation of ERK, AKT, and JNK pathways. Blood 106, 3423–3431 (2005).

    Article  CAS  Google Scholar 

  47. Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998).

    Article  CAS  Google Scholar 

  48. Zhang, S., Herrmann, C. & Grosse, F. Nucleolar localization of murine nuclear DNA helicase II (RNA helicase A). J. Cell Sci. 112, 2693–2703 (1999).

    CAS  PubMed  Google Scholar 

  49. Cirillo, L. A. & Zaret, K. S. Preparation of defined mononucleosomes, dinucleosomes, and nucleosome arrays in vitro and analysis of transcription factor binding. Methods Enzymol. 375, 131–158 (2004).

    Article  CAS  Google Scholar 

  50. Kouskouti, A. & Talianidis, I. Histone modifications defining active genes persist after transcriptional and mitotic inactivation. EMBO J. 24, 347–357 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all members of the laboratory for reagents, helpful suggestions and encouragement; M. Rocchigiani for VEGF-A preparations, B. Grandi for technical support, M. Bianchi for the YFP–H3 construct, R. Mantovani for Xenopus laevis histone constructs, B. Amati for Rat-1 and P493-6 cells, and I. Delany, M. Bianchi and E. Guccione for critical reading of the manuscript. This work was supported by Associazione Italiana Ricerca sul cancro (AIRC), Ministero Italiano Università e Ricerca (MIUR), and Fondazione Monte dei Paschi di Siena.

Author information

Authors and Affiliations

Authors

Contributions

A.Z. planned and performed the experiments and analysed the data. A.D.R. generated stable clones and performed immunoprecipitation experiments. R.S. performed the transformation assays. S.O. planned the experimental design, analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Salvatore Oliviero.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figure S1, S2, S3, S4, S5, S6, S7, S8, S9, Table S1, S2 and S3 (PDF 1013 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zippo, A., De Robertis, A., Serafini, R. et al. PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol 9, 932–944 (2007). https://doi.org/10.1038/ncb1618

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1618

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing