Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The regulated assembly of a PKCɛ complex controls the completion of cytokinesis

Abstract

The cell cycle is exquisitely controlled by multiple sequential regulatory inputs to ensure fidelity. Here we demonstrate that the final step in division, the physical separation of daughter cells, is controlled by a member of the PKC gene superfamily. Specifically, we have identified three phosphorylation sites within PKCɛ that control its association with 14-3-3. These phosphorylations are executed by p38 MAP kinase (Ser 350), GSK3 (Ser 346) and PKC itself (Ser 368). Integration of these signals is essential during mitosis because mutations that prevent phosphorylation of PKCɛ and/or PKCɛ binding to 14-3-3 also cause defects in the completion of cytokinesis. Using chemical genetic and dominant-negative approaches it is shown that selective inhibition of PKCɛ halts cells at the final stages of separation. This arrest is associated with persistent RhoA activation at the midbody and a delay in actomyosin ring dissociation. This study therefore identifies a new regulatory mechanism that controls exit from cytokinesis, which has implications for carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 14-3-3-β binding is mediated by phospho-Ser 346 and -Ser 368 on PKCɛ.
Figure 2: PKC, p38–MAPK and GSK3 phosphorylate Ser 368, Ser 350 and Ser 346, respectively.
Figure 3: Ser 346 phosphorylation occurs during mitosis and subsequent 14-3-3 association regulates cytokinesis.
Figure 4: A PKCɛ–14-3-3 complex is crucial for cytokinesis in HeLa cells.
Figure 5: 14-3-3 siRNA and dominant-negative 14-3-3 expression inhibits mitosis/cytokinesis.
Figure 6: Inhibiting PKCɛ activity prevents cytokinesis.
Figure 7: PKCɛ inhibits RhoA and prevents its association at the furrow during late cytokinesis.
Figure 8: Schematic representation summarizing how GSK3, p38 and PKC converge on the PKCɛ–14-3-3 complex to regulate abscission.

Similar content being viewed by others

References

  1. Mellor, H. & Parker, P. J. The extended protein kinase C superfamily. Biochem. J. 332, 281–292 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Newton, A. C. Protein kinase C: structure, function, and regulation. J. Biol. Chem. 270, 28495–28498 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Bridges, D. & Moorhead, G. B. 14–3-3 proteins: a number of functions for a numbered protein. Sci. STKE 2005, re10 (2005).

    PubMed  Google Scholar 

  4. Yaffe, M. B. et al. The structural basis for 14–3-3:phosphopeptide binding specificity. Cell 91, 961–971 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Lo, M. C., Gay, F., Odom, R., Shi, Y. & Lin, R. Phosphorylation by the β-catenin/MAPK complex promotes 14–3-3-mediated nuclear export of TCF/POP-1 in signal-responsive cells in C. elegans. Cell 117, 95–106 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. LeBron, C., Chen, L., Gilkes, D. M. & Chen, J. Regulation of MDMX nuclear import and degradation by Chk2 and 14–3-3. EMBO J. 25, 1196–1206 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Obsil, T., Ghirlando, R., Klein, D. C., Ganguly, S. & Dyda, F. Crystal structure of the 14–3-3ζ :serotonin N-acetyltransferase complex. A role for scaffolding in enzyme regulation. Cell 105, 257–267 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Han, D. C., Rodriguez, L. G. & Guan, J. L. Identification of a novel interaction between integrin beta1 and 14–3-3β. Oncogene 20, 346–357 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Benton, R. & St Johnston, D. Drosophila PAR-1 and 14–3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell 115, 691–704 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Peng, C. Y. et al. Mitotic and G2 checkpoint control: regulation of 14–3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277, 1501–1505 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Eggert, U. S., Mitchison, T. J. & Field, C. M. Animal cytokinesis: from parts list to mechanisms. Annu. Rev. Biochem. 75, 543–566 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Glotzer, M. The molecular requirements for cytokinesis. Science 307, 1735–1739 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Fujiwara, T. et al. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437, 1043–1047 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Nguyen, T. A., Takemoto, L. J. & Takemoto, D. J. Inhibition of gap junction activity through the release of the C1B domain of protein kinase Cgamma (PKCγ) from 14–3-3: identification of PKCγ-binding sites. J. Biol. Chem. 279, 52714–52725 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Dai, J. G. & Murakami, K. Constitutively and autonomously active protein kinase C associated with 14–3-3 ζ in the rodent brain. J. Neurochem. 84, 23–34 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Durgan, J. et al. The identification and characterisation of novel PKCɛ phosphorylation sites provides evidence for functional cross-talk within the PKC superfamily. Biochem. J. 411, 319–331 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Aitken, A. 14–3-3 proteins: a historic overview. Semin. Cancer Biol. 16, 162–172 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Eyers, P. A., van den, I. P., Quinlan, R. A., Goedert, M. & Cohen, P. Use of a drug-resistant mutant of stress-activated protein kinase 2a/p38 to validate the in vivo specificity of SB 203580. FEBS Lett. 451, 191–196 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Fiol, C. J., Wang, A., Roeske, R. W. & Roach, P. J. Ordered multisite protein phosphorylation. Analysis of glycogen synthase kinase 3 action using model peptide substrates. J. Biol. Chem. 265, 6061–6065 (1990).

    CAS  PubMed  Google Scholar 

  20. Wilker, E. W. et al. 14–3-3σ controls mitotic translation to facilitate cytokinesis. Nature 446, 329–332 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Thorson, J. A. et al. 14–3-3 proteins are required for maintenance of Raf-1 phosphorylation and kinase activity. Mol. Cell Biol. 18, 5229–5238 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wilker, E. W., Grant, R. A., Artim, S. C. & Yaffe, M. B. A structural basis for 14–3-3σ functional specificity. J. Biol. Chem. 280, 18891–18898 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Bishop, A. C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Emoto, K., Inadome, H., Kanaho, Y., Narumiya, S. & Umeda, M. Local change in phospholipid composition at the cleavage furrow is essential for completion of cytokinesis. J. Biol. Chem. 280, 37901–37907 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Emoto, K. & Umeda, M. An essential role for a membrane lipid in cytokinesis. Regulation of contractile ring disassembly by redistribution of phosphatidylethanolamine. J. Cell Biol. 149, 1215–1224 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dadke, D., Jarnik, M., Pugacheva, E. N., Singh, M. K. & Golemis, E. A. Deregulation of HEF1 impairs M-phase progression by disrupting the RhoA activation cycle. Mol. Biol. Cell 17, 1204–1217 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yuce, O., Piekny, A. & Glotzer, M. An ECT2-centralspindlin complex regulates the localization and function of RhoA. J. Cell Biol. 170, 571–582 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Minoshima, Y. et al. Phosphorylation by aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev. Cell 4, 549–560 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Shi, Q. & King, R. W. Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437, 1038–1042 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Li, F., Wang, X., Bunger, P. C. & Gerdes, A. M. Formation of binucleated cardiac myocytes in rat heart: I. Role of actin-myosin contractile ring. J. Mol. Cell. Cardiol. 29, 1541–1551 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Geddis, A. E., Fox, N. E., Tkachenko, E. & Kaushansky, K. Endomitotic megakaryocytes that form a bipolar spindle exhibit cleavage furrow ingression followed by furrow regression. Cell Cycle 6, 455–460 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Faisal, A., Saurin, A., Gregory, B., Foxwell, B. & Parker, P. J. The scaffold MYD88 acts to couple protein kinase C ɛ (PKCɛ) to toll-like receptors. J. Biol. Chem. advance online publication, doi 10:1074/jbc.M710330200 (5 May 2008).

  33. Saurin, A. T. et al. Targeted disruption of the protein kinase C ɛ gene abolishes the infarct size reduction that follows ischaemic preconditioning of isolated buffer-perfused mouse hearts. Cardiovasc. Res. 55, 672–680 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Griner, E. M. & Kazanietz, M. G. Protein kinase C and other diacylglycerol effectors in cancer. Nature Rev. 7, 281–294 (2007).

    CAS  Google Scholar 

  35. Kim, L. & Kimmel, A. R. GSK3, a master switch regulating cell-fate specification and tumorigenesis. Curr. Opin. Genet. Dev. 10, 508–514 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Olson, J. M. & Hallahan, A. R. p38 MAP kinase: a convergence point in cancer therapy. Trends Mol. Med. 10, 125–129 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Ivaska, J., Whelan, R. D., Watson, R. & Parker, P. J. PKCɛ controls the traffic of β1 integrins in motile cells. EMBO J. 21, 3608–3619 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Robert Messing for the initial characterization and constructs required to develop the chemical genetic approach for specific PKCɛ inhibition. We thank David Barford for providing purified GSK3β, Erik Sahai for cherry-RhoA, Andrey Shaw for DN-14-3-3, Alastair Aitken for GST–14-3-3-β and Myc–14-3-3-β, and Brenda Kostelecky for 14.3.3ζ. We would also like to acknowledge staff at the CRUK London Research Institute FACS laboratory and light microscopy facility. This work was supported by a British Heart Foundation Intermediate Research Fellowship, British Heart Foundation Project Grant and Cancer Research UK.

Author information

Authors and Affiliations

Authors

Contributions

A.T.S. carried out all experiments (except those depicted in Fig. 2b and Supplementary Information, Fig. S1c, which were performed by A.F.); A.T.S. jointly conceived the project (with P.J.P.) and wrote the manuscript with the help of P.J.P.; J.D. identified the Ser 368 autophosphorylation site and made the relevant antibodies and mutant constructs. A.J.C. helped in generating PKCɛ knockout MEFs expressing various PKCɛ mutants. M.S.M. provided the SR-p38 constructs and helpful advice. All authors contributed to editing of the manuscript.

Corresponding author

Correspondence to Peter J. Parker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saurin, A., Durgan, J., Cameron, A. et al. The regulated assembly of a PKCɛ complex controls the completion of cytokinesis. Nat Cell Biol 10, 891–901 (2008). https://doi.org/10.1038/ncb1749

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1749

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing