Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phosphorylation of ATM by Cdk5 mediates DNA damage signalling and regulates neuronal death

A Corrigendum to this article was published on 01 August 2009

Abstract

The phosphatidylinositol-3-kinase-like kinase ATM (ataxia-telangiectasia mutated) has a central role in coordinating DNA damage responses, including cell-cycle checkpoint control, DNA repair and apoptosis. Mutations of ATM cause a spectrum of defects ranging from neurodegeneration to cancer predisposition. However, the mechanism by which DNA damage activates ATM is poorly understood. Here we show that Cdk5 (cyclin-dependent kinase 5), activated by DNA damage, directly phosphorylates ATM at Ser 794 in post-mitotic neurons. Phosphorylation at Ser 794 precedes, and is required for, ATM autophosphorylation at Ser 1981, and activates ATM kinase activity. The Cdk5–ATM signal regulates phosphorylation and function of the ATM targets p53 and H2AX. Interruption of the Cdk5–ATM pathway attenuates DNA-damage-induced neuronal cell cycle re-entry and expression of the p53 targets PUMA and Bax, protecting neurons from death. Thus, activation of Cdk5 by DNA damage serves as a critical signal to initiate the ATM response and regulate ATM-dependent cellular processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cdk5 directly phosphorylates ATM in vitro and in cells.
Figure 2: Activation of Cdk5 by calpain contributes to ATM activation induced by DNA damage.
Figure 3: Inhibition of Cdk5 blocks DNA-damage-induced phosphorylation and activation of ATM and its effects on downstream targets.
Figure 4: Cdk5 regulates CPT-induced cell-cycle re-entry of post-mitotic neurons.
Figure 5: The Cdk5–ATM signal regulates neuronal death induced by DNA damage.

Similar content being viewed by others

References

  1. McKinnon, P. J. ATM and ataxia telangiectasia. EMBO Rep. 5, 772–776 (2004).

    Article  CAS  Google Scholar 

  2. Khanna, K. K., Lavin, M. F., Jackson, S. P. & Mulhern, T. D. ATM, a central controller of cellular responses to DNA damage. Cell Death Differ. 8, 1052–1065 (2001).

    Article  CAS  Google Scholar 

  3. Roos, W. P. & Kaina, B. DNA damage-induced cell death by apoptosis. Trends Mol. Med. 12, 440–450 (2006).

    Article  CAS  Google Scholar 

  4. Bakkenist, C. J. & Kastan, M. B. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–506 (2003).

    Article  CAS  Google Scholar 

  5. Kozlov, S. V. et al. Involvement of novel autophosphorylation sites in ATM activation. EMBO J. 25, 3504–3514 (2006).

    Article  CAS  Google Scholar 

  6. Dupre, A., Boyer-Chatenet, L. & Gautier, J. Two-step activation of ATM by DNA and the Mre11-Rad50-Nbs1 complex. Nature Struct. Mol. Biol. 13, 451–457 (2006).

    Article  CAS  Google Scholar 

  7. Pellegrini, M. et al. Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature 443, 222–225 (2006).

    Article  CAS  Google Scholar 

  8. Park, D. S., Levine, B., Ferrari, G. & Greene, L. A. Cyclin dependent kinase inhibitors and dominant negative cyclin dependent kinase 4 and 6 promote survival of NGF-deprived sympathetic neurons. J. Neurosci. 17, 8975–8983 (1997).

    Article  CAS  Google Scholar 

  9. Liu, D. X. & Greene, L. A. Neuronal apoptosis at the G1/S cell cycle checkpoint. Cell Tissue Res. 305, 217–228 (2001).

    Article  CAS  Google Scholar 

  10. Park, D. S. et al. Cyclin-dependent kinases participate in death of neurons evoked by DNA-damaging agents. J. Cell Biol. 143, 457–467 (1998).

    Article  CAS  Google Scholar 

  11. Copani, A. et al. Activation of cell-cycle-associated proteins in neuronal death: a mandatory or dispensable path? Trends Neurosci. 24, 25–31 (2001).

    Article  CAS  Google Scholar 

  12. Herrup, K., Neve, R., Ackerman, S. L. & Copani, A. Divide and die: cell cycle events as triggers of nerve cell death. J. Neurosci. 24, 9232–9239 (2004).

    Article  CAS  Google Scholar 

  13. Herzog, K. H., Chong, M. J., Kapsetaki, M., Morgan, J. I. & McKinnon, P. J. Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science 280, 1089–1091 (1998).

    Article  CAS  Google Scholar 

  14. Lee, Y., Chong, M. J. & McKinnon, P. J. Ataxia telangiectasia mutated-dependent apoptosis after genotoxic stress in the developing nervous system is determined by cellular differentiation status. J. Neurosci. 21, 6687–6693 (2001).

    Article  CAS  Google Scholar 

  15. Kruman, II et al. Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 41, 549–561 (2004).

    Article  CAS  Google Scholar 

  16. Dhavan, R. & Tsai, L. H. A decade of CDK5. Nature Rev. Mol. Cell Biol. 2, 749–759 (2001).

    Article  CAS  Google Scholar 

  17. Tang, X. et al. Cyclin-dependent kinase 5 mediates neurotoxin-induced degradation of the transcription factor myocyte enhancer factor 2. J. Neurosci. 25, 4823–4834 (2005).

    Article  CAS  Google Scholar 

  18. Gong, X. et al. Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron 38, 33–46 (2003).

    Article  CAS  Google Scholar 

  19. Wu, J. & Liu, L. F. Processing of topoisomerase I cleavable complexes into DNA damage by transcription. Nucleic Acids Res. 25, 4181–4186 (1997).

    Article  CAS  Google Scholar 

  20. Xiao, H. et al. The topoisomerase IIbeta circular clamp arrests transcription and signals a 26S proteasome pathway. Proc. Natl Acad. Sci. USA 100, 3239–3244 (2003).

    Article  CAS  Google Scholar 

  21. Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nature Rev. Cancer 6, 789–802 (2006).

    Article  CAS  Google Scholar 

  22. Sedarous, M. et al. Calpains mediate p53 activation and neuronal death evoked by DNA damage. J. Biol. Chem. 278, 26031–26038 (2003).

    Article  CAS  Google Scholar 

  23. Lee, M. S. et al. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360–364 (2000).

    Article  CAS  Google Scholar 

  24. Li, B. S., Zhang, L., Gu, J., Amin, N. D. & Pant, H. C. Integrin α(1) β(1)-mediated activation of cyclin-dependent kinase 5 activity is involved in neurite outgrowth and human neurofilament protein H Lys-Ser-Pro tail domain phosphorylation. J. Neurosci. 20, 6055–6062 (2000).

    Article  CAS  Google Scholar 

  25. Rozan, L. M. & El-Deiry, W. S. p53 downstream target genes and tumor suppression: a classical view in evolution. Cell Death Differ. 14, 3–9 (2007).

    Article  CAS  Google Scholar 

  26. Hickson, I. et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 64, 9152–9159 (2004).

    Article  CAS  Google Scholar 

  27. Gupta, A. et al. Involvement of human MOF in ATM function. Mol. Cell Biol. 25, 5292–5305 (2005).

    Article  CAS  Google Scholar 

  28. Sun, Y., Jiang, X., Chen, S., Fernandes, N. & Price, B. D. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc. Natl Acad. Sci. USA 102, 13182–13187 (2005).

    Article  CAS  Google Scholar 

  29. Uziel, T. et al. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22, 5612–5621 (2003).

    Article  CAS  Google Scholar 

  30. Kitagawa, R., Bakkenist, C. J., McKinnon, P. J. & Kastan, M. B. Phosphorylation of SMC1 is a critical downstream event in the ATM–NBS1–BRCA1 pathway. Genes Dev. 18, 1423–1438 (2004).

    Article  CAS  Google Scholar 

  31. Falck, J., Coates, J. & Jackson, S. P. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434, 605–611 (2005).

    Article  CAS  Google Scholar 

  32. Jamsa, A., Hasslund, K., Cowburn, R. F., Backstrom, A. & Vasange, M. The retinoic acid and brain-derived neurotrophic factor differentiated SH-SY5Y cell line as a model for Alzheimer's disease-like tau phosphorylation. Biochem. Biophys. Res. Commun. 319, 993–1000 (2004).

    Article  CAS  Google Scholar 

  33. Khanna, K. K. et al. ATM associates with and phosphorylates p53: mapping the region of interaction. Nature Genet. 20, 398–400 (1998).

    Article  CAS  Google Scholar 

  34. Lim, D. S. et al. ATM binds to β-adaptin in cytoplasmic vesicles. Proc. Natl Acad. Sci. USA 95, 10146–10151 (1998).

    Article  CAS  Google Scholar 

  35. Meuer, K. et al. Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis. Cell Death Differ. 14, 651–661 (2007).

    Article  CAS  Google Scholar 

  36. Lois, C., Hong, E. J., Pease, S., Brown, E. J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872 (2002).

    Article  CAS  Google Scholar 

  37. el-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Bert Vogelstein, Richard Gatti, Michael Kastan, Martin Lavin and Shuki Mizutani for p53 reporter constructs, purified ATM protein, ATM mammalian expression constructs, GST–ATM expression constructs, and A-T cell lines, respectively. This work was partially supported by NIH grants R01 NS048254 (Z. M.) and R01 AG023695 (Z. M.) and The Robert W. Woodruff Health Sciences Center Fund (Z. M.).

Author information

Authors and Affiliations

Authors

Contributions

Z.M. coordinated the overall project and planned the original experimental design; B.T. and Q.Y. conducted the experiments; Z.M. and B.T. analysed the data and wrote the paper.

Corresponding author

Correspondence to Zixu Mao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 954 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, B., Yang, Q. & Mao, Z. Phosphorylation of ATM by Cdk5 mediates DNA damage signalling and regulates neuronal death. Nat Cell Biol 11, 211–218 (2009). https://doi.org/10.1038/ncb1829

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1829

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing