Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2

Abstract

The Polycomb group (PcG) protein, enhancer of zeste homologue 2 (EZH2), has an essential role in promoting histone H3 lysine 27 trimethylation (H3K27me3) and epigenetic gene silencing1,2,3,4. This function of EZH2 is important for cell proliferation and inhibition of cell differentiation, and is implicated in cancer progression5,6,7,8,9,10. Here, we demonstrate that under physiological conditions, cyclin-dependent kinase 1 (CDK1) and cyclin-dependent kinase 2 (CDK2) phosphorylate EZH2 at Thr 350 in an evolutionarily conserved motif. Phosphorylation of Thr 350 is important for recruitment of EZH2 and maintenance of H3K27me3 levels at EZH2-target loci. Blockage of Thr 350 phosphorylation not only diminishes the global effect of EZH2 on gene silencing, it also mitigates EZH2-mediated cell proliferation and migration. These results demonstrate that CDK-mediated phosphorylation is a key mechanism governing EZH2 function and that there is a link between the cell-cycle machinery and epigenetic gene silencing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CDK1 and CDK2 phosphorylate EZH2 at Thr 350 in vitro.
Figure 2: CDK1 and CDK2 phosphorylate EZH2 at Thr 350 in vivo.
Figure 3: The effect of Thr 350 phosphorylation on EZH2-mediated repression of its target-genes.
Figure 4: The effect of Thr 350 phosphorylation on H3K27me3 levels and EZH2 recruitment at EZH2-target-gene promoters.
Figure 5: Phosphorylation of EZH2 Thr 350 is crucial for its function in promoting cell proliferation and migration.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    Article  CAS  Google Scholar 

  2. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16, 2893–2905 (2002).

    Article  CAS  Google Scholar 

  3. Czermin, B. et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185–196 (2002).

    Article  CAS  Google Scholar 

  4. Muller, J. et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197–208 (2002).

    Article  CAS  Google Scholar 

  5. Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003).

    Article  CAS  Google Scholar 

  6. Shen, X. et al. Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. Cell 139, 1303–1314 (2009).

    Article  Google Scholar 

  7. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    Article  CAS  Google Scholar 

  8. Sparmann, A. & van Lohuizen, M. Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer 6, 846–856 (2006).

    Article  CAS  Google Scholar 

  9. Schwartz, Y. B. & Pirrotta, V. Polycomb silencing mechanisms and the management of genomic programmes. Nat. Rev. Genet. 8, 9–22 (2007).

    Article  CAS  Google Scholar 

  10. Simon, J. A. & Kingston, R. E. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat. Rev. Mol. Cell. Biol. 10, 697–708 (2009).

    Article  CAS  Google Scholar 

  11. Lee, T. I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    Article  CAS  Google Scholar 

  12. Simon, J. A. & Lange, C. A. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat. Res. 647, 21–29 (2008).

    Article  CAS  Google Scholar 

  13. Varambally, S. et al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322, 1695–1699 (2008).

    Article  CAS  Google Scholar 

  14. Chen, H., Tu, S. W. & Hsieh, J. T. Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J. Biol. Chem. 280, 22437–22444 (2005).

    Article  CAS  Google Scholar 

  15. Yu, J. et al. Integrative genomics analysis reveals silencing of beta-adrenergic signaling by polycomb in prostate cancer. Cancer Cell 12, 419–431 (2007).

    Article  CAS  Google Scholar 

  16. Kotake, Y. et al. pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. Genes Dev. 21, 49–54 (2007).

    Article  CAS  Google Scholar 

  17. Bracken, A. P. et al. EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J. 22, 5323–5335 (2003).

    Article  CAS  Google Scholar 

  18. Cha, T. L. et al. Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310, 306–310 (2005).

    Article  CAS  Google Scholar 

  19. Margueron, R. et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol. Cell 32, 503–518 (2008).

    Article  CAS  Google Scholar 

  20. Shen, X. et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol. Cell 32, 491–502 (2008).

    Article  CAS  Google Scholar 

  21. Boyer, L.A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  Google Scholar 

  22. Huang, H., Regan, K. M., Lou, Z., Chen, J. & Tindall, D. J. CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science 314, 294–297 (2006).

    Article  CAS  Google Scholar 

  23. van der Vlag, J. & Otte, A. P. Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nat. Genet. 23, 474–478 (1999).

    Article  CAS  Google Scholar 

  24. Cao, R. & Zhang, Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol. Cell 15, 57–67 (2004).

    Article  CAS  Google Scholar 

  25. Ezhkova, E. et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell 136, 1122–1135 (2009).

    Article  CAS  Google Scholar 

  26. Richter, G. H. et al. EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation. Proc. Natl Acad. Sci. USA 106, 5324–5329 (2009).

    Article  CAS  Google Scholar 

  27. Min, J. et al. An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-κB. Nat. Med. 16, 286–294 (2010).

    Article  CAS  Google Scholar 

  28. Kleer, C.G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl Acad. Sci. USA 100, 11606–11611 (2003).

    Article  CAS  Google Scholar 

  29. Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153–166 (2009).

    Article  CAS  Google Scholar 

  30. Peter, M., Nakagawa, J., Doree, M., Labbe, J.C. & Nigg, E.A. Identification of major nucleolar proteins as candidate mitotic substrates of cdc2 kinase. Cell 60, 791–801 (1990).

    Article  CAS  Google Scholar 

  31. Parker, L. L. & Piwnica-Worms, H. Inactivation of the p34cdc2–cyclin B complex by the human WEE1 tyrosine kinase. Science 257, 1955–1957 (1992).

    Article  CAS  Google Scholar 

  32. Liu, P., Kao, T.P. & Huang, H. CDK1 promotes cell proliferation and survival via phosphorylation and inhibition of FOXO1 transcription factor. Oncogene 27, 4733–4744 (2008).

    Article  CAS  Google Scholar 

  33. Huang, H., Zegarra-Moro, O.L., Benson, D. & Tindall, D.J. Androgens repress Bcl-2 expression via activation of the retinoblastoma (RB) protein in prostate cancer cells. Oncogene 23, 2161–2176 (2004).

    Article  CAS  Google Scholar 

  34. Amendola, M., Venneri, M. A., Biffi, A., Vigna, E. & Naldini, L. Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat. Biotechnol. 23, 108–116 (2005).

    Article  CAS  Google Scholar 

  35. Huang, X. et al. Sleeping Beauty transposon-mediated engineering of human primary T cells for therapy of CD19+ lymphoid malignancies. Mol. Ther. 16, 580–589 (2008).

    Article  CAS  Google Scholar 

  36. Dephoure, N. et al. A quantitative atlas of mitotic phosphorylation. Proc. Natl Acad. Sci. USA 105, 10762–10767 (2008).

    Article  CAS  Google Scholar 

  37. Li, C. & Wong, W. H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl Acad. Sci. USA 98, 31–36 (2001).

    Article  CAS  Google Scholar 

  38. Sturn, A., Quackenbush, J. & Trajanoski, Z. Genesis: cluster analysis of microarray data. Bioinformatics 18, 207–208 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. –C. Hung, Y. Zhang, H. Piwnica-Worms and L. Naldini for plasmids, R. A. Weinberg for BJ cells, K. Zhang for helping in the analysis of mass spectrometry data, and Z. Zhang for critical comments and suggestions. This work was supported in part by grants from the National Institutes of Health (CA134514 and CA130908 to H.H. and GM49850 to J.S.), the Department of Defense (W81XWH-07-1-0137 and W81XWH-09-1-622 to H.H. and W81XWH-07-1-0373 to J.S.), and a Brainstorm Award from University of Minnesota Masonic Cancer Center (to H.H.).

Author information

Authors and Affiliations

Authors

Contributions

S.C. performed most of the experiments and analysis. L.R.B. generated mutation constructs. A.N.R. performed PRC2 complex purification and in vitro HMTase assays. Y.P. performed immunofluorescent chemistry. L.G. provided technical assistance. X.Z. and A.B. provided reagents and technical advices. H.H. conceived the study. S.C., J.A.S. and H.H. wrote the manuscript.

Corresponding author

Correspondence to Haojie Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1059 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Bohrer, L., Rai, A. et al. Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2. Nat Cell Biol 12, 1108–1114 (2010). https://doi.org/10.1038/ncb2116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2116

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing