Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CSPα promotes SNARE-complex assembly by chaperoning SNAP-25 during synaptic activity

A Corrigendum to this article was published on 01 February 2011

This article has been updated

Abstract

A neuron forms thousands of presynaptic nerve terminals on its axons, far removed from the cell body. The protein CSPα resides in presynaptic terminals, where it forms a chaperone complex with Hsc70 and SGT. Deletion of CSPα results in massive neurodegeneration that impairs survival in mice and flies. In CSPα-knockout mice, levels of presynaptic SNARE complexes and the SNARE protein SNAP-25 are reduced, suggesting that CSPα may chaperone SNARE proteins, which catalyse synaptic vesicle fusion. Here, we show that the CSPα–Hsc70–SGT complex binds directly to monomeric SNAP-25 to prevent its aggregation, enabling SNARE-complex formation. Deletion of CSPα produces an abnormal SNAP-25 conformer that inhibits SNARE-complex formation, and is subject to ubiquitylation and proteasomal degradation. Even in wild-type mouse terminals, SNAP-25 degradation is regulated by synaptic activity; this degradation is decreased by CSPα overexpression, and enhanced by CSPα deletion. Thus, SNAP-25 function is maintained during rapid SNARE cycles by equilibrium between CSPα-dependent chaperoning and ubiquitin-dependent degradation, revealing unique protein quality-control machinery within the presynaptic compartment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CSPα knockout selectively decreases SNAP-25 levels and increases SNAP-25 protease sensitivity.
Figure 2: CSPα deletion increases SNAP-25 ubiquitylation and proteasomal degradation.
Figure 3: Neuronal activity controls SNAP-25 levels in a CSPα-dependent manner.
Figure 4: CSPα overexpression stabilizes SNAP-25.
Figure 5: CSPα binds to monomeric SNAP-25 through Hsc70.
Figure 6: The CSPα–Hsc70–SGT complex chaperones SNAP-25 and enhances its incorporation into SNARE complexes in vitro.
Figure 7: Model of the function of the CSPα–Hsc70–SGT chaperone complex.

Similar content being viewed by others

Change history

  • 21 December 2010

    In the version of this article initially published online and in print, grant information was missing from the acknowledgements.

References

  1. Katz, B. The Release of Neuronal Transmitter Substances (Liverpool University Press, 1969).

    Google Scholar 

  2. Wickner, W. & Schekman, R. Membrane fusion. Nat. Struct. Mol. Biol. 15, 658–664 (2008).

    Article  CAS  Google Scholar 

  3. Sudhof, T. C. & Rothman, J. E. Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474–477 (2009).

    Article  Google Scholar 

  4. Sollner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation and fusion. Cell 75, 409–418 (1993).

    Article  CAS  Google Scholar 

  5. Sutton, R. B., Fasshauer, D., Jahn, R. & Brunger, A. T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347–353 (1998).

    Article  CAS  Google Scholar 

  6. Kushmerick, C., Renden, R. & von Gersdorff, H. Physiological temperatures reduce the rate of vesicle pool depletion and short-term depression via an acceleration of vesicle recruitment. J. Neurosci. 26, 1366–1377 (2006).

    Article  CAS  Google Scholar 

  7. Matsuda, W. et al. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci. 29, 444–453 (2009).

    Article  CAS  Google Scholar 

  8. Hartl, F. U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  CAS  Google Scholar 

  9. Arvan, P., Zhao, X., Ramos-Castaneda, J. & Chang, A. Secretory pathway quality control operating in Golgi, plasmalemmal, and endosomal systems. Traffic 3, 771–780 (2002).

    Article  CAS  Google Scholar 

  10. Anelli, T. & Sitia, R. Protein quality control in the early secretory pathway. EMBO J. 27, 315–327 (2008).

    Article  CAS  Google Scholar 

  11. Burré, J. et al. α-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329, 1663–1667 (2010).

    Article  Google Scholar 

  12. Buchner, E. & Gundersen, C. B. The DnaJ-like cysteine string protein and exocytotic neurotransmitter release. Trends Neurosci. 20, 223–227 (1997).

    Article  CAS  Google Scholar 

  13. Chamberlain, L. H. & Burgoyne, R. D. Cysteine-string protein: the chaperone at the synapse. J. Neurochem. 74, 1781–1789 (2000).

    Article  CAS  Google Scholar 

  14. Young, J. C., Agashe, V. R., Siegers, K. & Hartl, F. U. Pathways of chaperone-mediated protein folding in the cytosol. Nat. Rev. Mol. Cell Biol. 5, 781–791 (2004).

    Article  CAS  Google Scholar 

  15. Johnson, J. N., Ahrendt, E. & Braun, J. E. CSPα: the neuroprotective J protein. Biochem. Cell Biol. 88, 157–165 (2010).

    Article  CAS  Google Scholar 

  16. Chamberlain, L. H. & Burgoyne, R. D. The molecular chaperone function of the secretory vesicle cysteine string proteins. J. Biol. Chem. 272, 31420–31426 (1997).

    Article  CAS  Google Scholar 

  17. Tobaben, S. et al. A trimeric protein complex functions as a synaptic chaperone machine. Neuron 31, 987–999 (2001).

    Article  CAS  Google Scholar 

  18. Fernandez-Chacon, R. et al. The synaptic vesicle protein CSPα prevents presynaptic degeneration. Neuron 42, 237–251 (2004).

    Article  CAS  Google Scholar 

  19. Umbach, J. A. et al. Presynaptic dysfunction in Drosophila csp mutants. Neuron 13, 899–907 (1994).

    Article  CAS  Google Scholar 

  20. Zinsmaier, K. E., Eberle, K. K., Buchner, E., Walter, N. & Benzer, S. Paralysis and early death in cysteine string protein mutants of Drosophila. Science 263, 977–980 (1994).

    Article  CAS  Google Scholar 

  21. Ruiz, R., Casanas, J. J., Sudhof, T. C. & Tabares, L. Cysteine string protein-α is essential for the high calcium sensitivity of exocytosis in a vertebrate synapse. Eur. J. Neurosci. 27, 3118–3131 (2008).

    Article  CAS  Google Scholar 

  22. Schmitz, F. et al. CSPα-deficiency causes massive and rapid photoreceptor degeneration. Proc. Natl Acad. Sci. USA 103, 2926–2931 (2006).

    Article  CAS  Google Scholar 

  23. Chandra, S., Gallardo, G., Fernandez-Chacon, R., Schluter, O. M. & Sudhof, T. C. α-synuclein cooperates with CSPα in preventing neurodegeneration. Cell 123, 383–396 (2005).

    Article  CAS  Google Scholar 

  24. Gundersen, C. B., Mastrogiacomo, A., Faull, K. & Umbach, J. A. Extensive lipidation of a Torpedo cysteine string protein. J. Biol. Chem. 269, 19197–19199 (1994).

    CAS  PubMed  Google Scholar 

  25. Chamberlain, L. H. & Burgoyne, R. D. Cysteine string protein functions directly in regulated exocytosis. Mol. Biol. Cell 9, 2259–2267 (1998).

    Article  CAS  Google Scholar 

  26. Palleros, D. R., Reid, K. L., Shi, L., Welch, W. J. & Fink, A. L. ATP-induced protein-Hsp70 complex dissociation requires K+ but not ATP hydrolysis. Nature 365, 664–666 (1993).

    Article  CAS  Google Scholar 

  27. Flynn, G. C., Chappell, T. G. & Rothman, J. E. Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245, 385–390 (1989).

    Article  CAS  Google Scholar 

  28. Jahn, R. & Scheller, R. H. SNAREs—engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643 (2006).

    Article  CAS  Google Scholar 

  29. Sollner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324 (1993).

    Article  CAS  Google Scholar 

  30. Jahn, R. & Südhof, T. C. Synaptic vesicle traffic: rush hour in the nerve terminal. J. Neurochem. 61, 12–21 (1993).

    Article  CAS  Google Scholar 

  31. Zhang, H. et al. Cysteine string protein interacts with and modulates the maturation of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 277, 28948–28958 (2002).

    Article  CAS  Google Scholar 

  32. Garcia-Junco-Clemente, P. et al. Cysteine string protein-α prevents activity-dependent degeneration in GABAergic synapses. J. Neurosci. 30, 7377–7391 (2010).

    Article  CAS  Google Scholar 

  33. Mattson, M. P. Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med. 3, 65–94 (2003).

    Article  CAS  Google Scholar 

  34. Mabb, A. M. & Ehlers, M. D. Ubiquitination in postsynaptic function and plasticity. Annu. Rev. Cell Dev. Biol. 26, 179–210 (2010).

    Article  CAS  Google Scholar 

  35. Segref, A. & Hoppe, T. Think locally: control of ubiquitin-dependent protein degradation in neurons. EMBO Rep. 10, 44–50 (2009).

    Article  CAS  Google Scholar 

  36. Okiyoneda, T. et al. Peripheral protein quality control removes unfolded CFTR from the plasma membrane. Science 329, 805–810 (2010).

    Article  CAS  Google Scholar 

  37. Pang, Z. P., Cao, P., Xu, W. & Sudhof, T. C. Calmodulin controls synaptic strength via presynaptic activation of calmodulin kinase II. J. Neurosci. 30, 4132–4142 (2010).

    Article  CAS  Google Scholar 

  38. Chomczynski, P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15, 532–534, 536–537 (1993).

    CAS  Google Scholar 

  39. Maximov, A., Pang, Z. P., Tervo, D. G. & Sudhof, T. C. Monitoring synaptic transmission in primary neuronal cultures using local extracellular stimulation. J. Neurosci. Methods 161, 75–87 (2007).

    Article  Google Scholar 

  40. Xu, J., Mashimo, T. & Sudhof, T. C. Synaptotagmin-1, -2, and -9: Ca(2+) sensors for fast release that specify distinct presynaptic properties in subsets of neurons. Neuron 54, 567–581 (2007).

    Article  CAS  Google Scholar 

  41. Ho, A., Liu, X. & Sudhof, T. C. Deletion of Mint proteins decreases amyloid production in transgenic mouse models of Alzheimer's disease. J. Neurosci. 28, 14392–14400 (2008).

    Article  CAS  Google Scholar 

  42. Sharma, M., Benharouga, M., Hu, W. & Lukacs, G. L. Conformational and temperature-sensitive stability defects of the ΔF508 cystic fibrosis transmembrane conductance regulator in post-endoplasmic reticulum compartments. J. Biol. Chem. 276, 8942–8950 (2001).

    Article  CAS  Google Scholar 

  43. Hayashi, T. et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. EMBO J. 13, 5051–5061 (1994).

    Article  CAS  Google Scholar 

  44. Sugita, S. & Sudhof, T. C. Specificity of Ca2+-dependent protein interactions mediated by the C2A domains of synaptotagmins. Biochemistry 39, 2940–2949 (2000).

    Article  CAS  Google Scholar 

  45. Tang, J. et al. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126, 1175–1187 (2006).

    Article  CAS  Google Scholar 

  46. Rosahl, T. W. et al. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375, 488–493 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Chandra for discussions, and J. Mitchell, A. Roth and I. Kornblum for technical support. This work was supported by the National Institute on Aging (NIH grant RC2AG036614 to T.C.S.), and fellowships from the Human Frontiers Program (LT00527/2006-L to M.S.) and the 'Deutsche Akademie der Naturforscher Leopoldina' (BMBF-LPD 9901/8-161 to J.B.).

Author information

Authors and Affiliations

Authors

Contributions

M.S. and T.C.S. designed the study. M.S. and J.B. performed and analysed the experiments. M.S., J.B. and T.C.S. wrote the manuscript.

Corresponding authors

Correspondence to Manu Sharma or Thomas C. Südhof.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, M., Burré, J. & Südhof, T. CSPα promotes SNARE-complex assembly by chaperoning SNAP-25 during synaptic activity. Nat Cell Biol 13, 30–39 (2011). https://doi.org/10.1038/ncb2131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing