Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Syndecan–syntenin–ALIX regulates the biogenesis of exosomes

Abstract

The biogenesis of exosomes, small secreted vesicles involved in signalling processes, remains incompletely understood. Here, we report evidence that the syndecan heparan sulphate proteoglycans and their cytoplasmic adaptor syntenin control the formation of exosomes. Syntenin interacts directly with ALIX through LYPX(n)L motifs, similarly to retroviral proteins, and supports the intraluminal budding of endosomal membranes. Syntenin exosomes depend on the availability of heparan sulphate, syndecans, ALIX and ESCRTs, and impact on the trafficking and confinement of FGF signals. This study identifies a key role for syndecan–syntenin–ALIX in membrane transport and signalling processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Syntenin interacts with ALIX, adapting ALIX to syndecan, and co-fractionates with these in exosomes.
Figure 2: Syntenin gain enhances exosome yields.
Figure 3: Syndecan–syntenin–ALIX depletion impairs exosome yields.
Figure 4: Syntenin exosomes are of endosomal origin.
Figure 5: The biogenesis of syntenin exosomes requires ESCRTs.
Figure 6: Syntenin exosomes require syndecan oligomerization and cleavage.

Similar content being viewed by others

References

  1. Bobrie, A., Colombo, M., Raposo, G. & Théry, C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12, 1659–1668 (2011).

    Article  CAS  Google Scholar 

  2. Fevrier, B. & Raposo, G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr. Opin. Cell Biol. 16, 415–421 (2004).

    Article  CAS  Google Scholar 

  3. Couzin, J. Cell biology: the ins and outs of exosomes. Science 308, 1862–1863 (2005).

    Article  CAS  Google Scholar 

  4. Liegeois, S., Benedetto, A., Garnier, J. M., Schwab, Y. & Labouesse, M. The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J. Cell Biol. 173, 949–961 (2006).

    Article  CAS  Google Scholar 

  5. Al-Nedawi, K. et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10, 619–624 (2008).

    Article  CAS  Google Scholar 

  6. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  CAS  Google Scholar 

  7. Thery, C., Zitvogel, L. & Amigorena, S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2, 569–579 (2002).

    Article  CAS  Google Scholar 

  8. Nabhan, J. F., Hu, R., Oh, R. S., Cohen, S. N. & Lu, Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc. Natl Acad. Sci. USA 109, 4146–4151 (2012).

    Article  CAS  Google Scholar 

  9. Wehman, A. M., Poggioli, C., Schweinsberg, P., Grant, B. D. & Nance, J. The P4-ATPase TAT-5 inhibits the budding of extracellular vesicles in C. elegans embryos. Curr. Biol. 21, 1951–1959 (2011).

    Article  CAS  Google Scholar 

  10. Raiborg, C. & Stenmark, H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452 (2009).

    Article  CAS  Google Scholar 

  11. Henne, W. M., Buchkovich, N. J. & Emr, S. D. The ESCRT pathway. Dev. Cell 21, 77–91 (2011).

    Article  CAS  Google Scholar 

  12. Wollert, T. & Hurley, J. Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 464, 864–869 (2010).

    Article  CAS  Google Scholar 

  13. Hurley, J. & Hanson, P. Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat. Rev. Mol. Cell Biol. 11, 556–566 (2010).

    Article  CAS  Google Scholar 

  14. Babst, M. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr. Opin. Cell Biol. 23, 452–457 (2011).

    Article  CAS  Google Scholar 

  15. Stuffers, S., Sem Wegner, C., Stenmark, H. & Brech, A. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10, 925–937 (2009).

    Article  CAS  Google Scholar 

  16. Theos, A. C. et al. A lumenal domain-dependent pathway for sorting to intralumenal vesicles of multivesicular endosomes involved in organelle morphogenesis. Dev. Cell 10, 343–354 (2006).

    Article  CAS  Google Scholar 

  17. Odorizzi, G. The multiple personalities of Alix. J. Cell Sci. 119, 3025–3032 (2006).

    Article  CAS  Google Scholar 

  18. Matsuo, H. et al. Role of LBPA and Alix in multivesicular liposome formation and endosome organization. 303, 531-534 (2004).

  19. Fujii, K., Hurley, J. H. & Freed, E. O. Beyond Tsg101: the role of Alix in ’ESCRTing’ HIV-1. Nat. Rev. Microbiol. 5, 912–916 (2007).

    Article  CAS  Google Scholar 

  20. Martin-Serrano, J. & Neil, S. J. Host factors involved in retroviral budding and release. Nat. Rev. Microbiol. 9, 519–531 (2011).

    Article  CAS  Google Scholar 

  21. Rapraeger, A. C., Krufka, A. & Olwin, B. B. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252, 1705–1708 (1991).

    Article  CAS  Google Scholar 

  22. Schlessinger, J. et al. Crystal structure of a ternary FGF–FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell 6, 743–750 (2000).

    Article  CAS  Google Scholar 

  23. Bishop, J. R., Schuksz, M. & Esko, J. D. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446, 1030–1037 (2007).

    Article  CAS  Google Scholar 

  24. Hacker, U., Nybakken, K. & Perrimon, N. Heparan sulphate proteoglycans: the sweet side of development. Nat. Rev. Mol. Cell Biol. 6, 530–541 (2005).

    Article  Google Scholar 

  25. Couchman, J. Transmembrane signaling proteoglycans. Annu. Rev. Cell Dev. Biol. 26, 89–114 (2010).

    Article  CAS  Google Scholar 

  26. Lambaerts, K., Wilcox-Adelman, S. A. & Zimmermann, P. The signaling mechanisms of syndecan heparan sulfate proteoglycans. Curr. Opin. Cell Biol. 21, 662–669 (2009).

    Article  CAS  Google Scholar 

  27. Morgan, M. R., Humphries, M. J. & Bass, M. D. Synergistic control of cell adhesion by integrins and syndecans. Nat. Rev. Mol. Cell Biol. 8, 957–969 (2007).

    Article  CAS  Google Scholar 

  28. Grootjans, J. J. et al. Syntenin, a PDZ protein that binds syndecan cytoplasmic domains. Proc. Natl Acad. Sci. USA 94, 13683–13688 (1997).

    Article  CAS  Google Scholar 

  29. Beekman, J. M. & Coffer, P. J. The ins and outs of syntenin, a multifunctional intracellular adaptor protein. J. Cell Sci. 121, 1349–1355 (2008).

    Article  CAS  Google Scholar 

  30. Grootjans, J. J., Reekmans, G., Ceulemans, H. & David, G. Syntenin-syndecan binding requires syndecan-synteny and the co-operation of both PDZ domains of syntenin. J. Biol. Chem. 275, 19933–19941 (2000).

    Article  CAS  Google Scholar 

  31. Zimmermann, P. et al. Characterization of syntenin, a syndecan-binding PDZ protein, as a component of cell adhesion sites and microfilaments. Mol. Biol. Cell 12, 339–350 (2001).

    Article  CAS  Google Scholar 

  32. Zimmermann, P. et al. PIP(2)-PDZ domain binding controls the association of syntenin with the plasma membrane. Mol. Cell 9, 1215–1225 (2002).

    Article  CAS  Google Scholar 

  33. Zimmermann, P. et al. Syndecan recycling [corrected] is controlled by syntenin-PIP2 interaction and Arf6. Dev. Cell 9, 377–388 (2005).

    Article  CAS  Google Scholar 

  34. Gottlinger, H. G. How HIV-1 hijacks ALIX. Nat. Struct. Mol. Biol. 14, 254–256 (2007).

    Article  Google Scholar 

  35. Lee, S., Joshi, A., Nagashima, K., Freed, E. O. & Hurley, J. H. Structural basis for viral late-domain binding to Alix. Nat. Struct. Mol. Biol. 14, 194–199 (2007).

    Article  CAS  Google Scholar 

  36. Zhai, Q. et al. Structural and functional studies of ALIX interactions with YPX(n)L late domains of HIV-1 and EIAV. Nat. Struct. Mol. Biol. 15, 43–49 (2008).

    Article  CAS  Google Scholar 

  37. Thery, C. et al. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J. Cell Biol. 147, 599–610 (1999).

    Article  CAS  Google Scholar 

  38. Mathivanan, S. & Simpson, R. J. ExoCarta: a compendium of exosomal proteins and RNA. Proteomics 9, 4997–5000 (2009).

    Article  CAS  Google Scholar 

  39. Latysheva, N. et al. Syntenin-1 is a new component of tetraspanin-enriched microdomains: mechanisms and consequences of the interaction of syntenin-1 with CD63. Mol. Cell Biol. 26, 7707–7718 (2006).

    Article  CAS  Google Scholar 

  40. Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).

    Article  CAS  Google Scholar 

  41. Stenmark, H. et al. Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J. 13, 1287–1296 (1994).

    Article  CAS  Google Scholar 

  42. Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005).

    Article  CAS  Google Scholar 

  43. Vanlandingham, P. A. & Ceresa, B. P. Rab7 regulates late endocytic trafficking downstream of multivesicular body biogenesis and cargo sequestration. J. Biol. Chem. 284, 12110–12124 (2009).

    Article  CAS  Google Scholar 

  44. Doyotte, A., Russell, M., Hopkins, C. & Woodman, P. Depletion of TSG101 forms a mammalian ‘Class E’ compartment: a multicisternal early endosome with multiple sorting defects. J. Cell Sci. 118, 3003–3017 (2005).

    Article  CAS  Google Scholar 

  45. Razi, M. & Futter, C. E. Distinct roles for Tsg101 and Hrs in multivesicular body formation and inward vesiculation. Mol. Biol. Cell 17, 3469–3483 (2006).

    Article  CAS  Google Scholar 

  46. Bishop, N. & Woodman, P. ATPase-defective mammalian VPS4 localizes to aberrant endosomes and impairs cholesterol trafficking. Mol. Biol. Cell 11, 227–239 (2000).

    Article  CAS  Google Scholar 

  47. Morita, E. et al. ESCRT-III protein requirements for HIV-1 budding. Cell Host Microbe. 9, 235–242 (2011).

    Article  CAS  Google Scholar 

  48. Jouvenet, N., Zhadina, M., Bieniasz, P. D. & Simon, S. M. Dynamics of ESCRT protein recruitment during retroviral assembly. Nat. Cell Biol. 13, 394–401 (2011).

    Article  CAS  Google Scholar 

  49. Fang, Y. et al. Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol. 5, e158 (2007).

    Article  Google Scholar 

  50. Schulz, J. et al. Syndecan 3 intramembrane proteolysis is presenilin/gamma-secretase-dependent and modulates cytosolic signaling. J. Biol. Chem. 278, 48651–48657 (2003).

    Article  CAS  Google Scholar 

  51. Tkachenko, E. & Simons, M. Clustering induces redistribution of syndecan-4 core protein into raft membrane domains. J. Biol. Chem. 277, 19946–19951 (2002).

    Article  CAS  Google Scholar 

  52. McClelland, A. C., Sheffler-Collins, S. I., Kayser, M. S. & Dalva, M. B. Ephrin-B1 and ephrin-B2 mediate EphB-dependent presynaptic development via syntenin-1. Proc. Natl Acad. Sci. USA 106, 20487–20492 (2009).

    Article  CAS  Google Scholar 

  53. Xu, N. J., Sun, S., Gibson, J. R. & Henkemeyer, M. A dual shaping mechanism for postsynaptic ephrin-B3 as a receptor that sculpts dendrites and synapses. Nat. Neurosci. 14, 1421–1429 (2011).

    Article  CAS  Google Scholar 

  54. Luyten, A. et al. The postsynaptic density 95/disc-large/zona occludens protein syntenin directly interacts with frizzled 7 and supports noncanonical Wnt signaling. Mol. Biol. Cell 19, 1594–1604 (2008).

    Article  CAS  Google Scholar 

  55. Zhou, X., Si, J., Corvera, J., Gallick, G. E. & Kuang, J. Decoding the intrinsic mechanism that prohibits ALIX interaction with ESCRT and viral proteins. Biochem. J. 432, 525–534 (2010).

    Article  CAS  Google Scholar 

  56. Sannerud, R. et al. ADP ribosylation factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1. Proc. Natl Acad. Sci. USA 108, E559–E568 (2011).

    Article  CAS  Google Scholar 

  57. David, G., van der Schueren, B., Marynen, P., Cassiman, J. J. & van den Berghe, H. Molecular cloning of amphiglycan, a novel integral membrane heparan sulfate proteoglycan expressed by epithelial and fibroblastic cells. J. Cell Biol. 118, 961–969 (1992).

    Article  CAS  Google Scholar 

  58. Lories, V., Cassiman, J. J., Van den Berghe, H. & David, G. Multiple distinct membrane heparan sulfate proteoglycans in human lung fibroblasts. J. Biol. Chem. 264, 7009–7016 (1989).

    CAS  PubMed  Google Scholar 

  59. Ivarsson, Y. et al. Cooperative phosphoinositide and peptide binding by PSD-95/Discs Large/ZO-1 (PDZ) domain of polychaetoid, Drosophila zonulin. J. Biol. Chem. 286, 44669–44678 (2011).

    Article  CAS  Google Scholar 

  60. Zhang, Z., Coomans, C. & David, G. Membrane heparan sulfate proteoglycan-supported FGF2-FGFR1 signaling: evidence in support of the ‘cooperative end structures’ model. J. Biol. Chem. 276, 41921–41929 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to H. Ceulemans, G. Reekmans and J. Grootjans for technical support, and to P. Baatsen for access to the electron microscopy facility at the Department for Human Genetics, VIB-KULeuven. We thank C. Dotti and P. Courtoy for critical feedback on the manuscript. This work was supported by the Fund for Scientific Research-Flanders (FWO), the Concerted Actions Program of the K.U. Leuven, the VIB, the Belgian Federation against Cancer (STK), the Interuniversity Attraction Poles of the Prime Ministers Services (IUAP) and the EMBO young investigator programme (P.Z.). A.M. was supported by a Marie Curie postdoctoral fellowship of the EU (FP7); Y.I. by an EMBO-long term postdoctoral fellowship; and A.G. by a PhD-student fellowship of the Agency for Innovation by Science and Technology (IWT), Flanders.

Author information

Authors and Affiliations

Authors

Contributions

The work is an equal contribution of two laboratories. M.F.B., Z.Z. and A.M. performed the cellular experiments; E.M. and Y.I. did the Biacore, A.G. the fluorescence spectroscopy, G. Degeest the electron microscopy, and F.D. the co-immunoprecipitation and the Y2H analyses; E.V. made the various expression constructs and C.C. assisted with cell culture and biochemical analyses; P.Z. and G. David designed experiments, analysed data and wrote the manuscript. All authors discussed results and commented on the manuscript.

Corresponding authors

Correspondence to Pascale Zimmermann or Guido David.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2143 kb)

Supplementary Table 1

Supplementary Information (XLSX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baietti, M., Zhang, Z., Mortier, E. et al. Syndecan–syntenin–ALIX regulates the biogenesis of exosomes. Nat Cell Biol 14, 677–685 (2012). https://doi.org/10.1038/ncb2502

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2502

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing