Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deubiquitylation and stabilization of PTEN by USP13

Abstract

The tumour suppressor PTEN is frequently lost in human cancers. In addition to gene mutations and deletions, recent studies have revealed the importance of post-translational modifications, such as ubiquitylation, in the regulation of PTEN stability, activity and localization. However, the deubiquitylase that regulates PTEN polyubiquitylation and protein stability remains unknown. Here we screened a total of 30 deubiquitylating enzymes (DUBs) and identified five DUBs that physically associate with PTEN. One of them, USP13, stabilizes the PTEN protein through direct binding and deubiquitylation of PTEN. Loss of USP13 in breast cancer cells promotes AKT phosphorylation, cell proliferation, anchorage-independent growth, glycolysis and tumour growth through downregulation of PTEN. Conversely, overexpression of USP13 suppresses tumorigenesis and glycolysis in PTEN-positive but not PTEN-null breast cancer cells. Importantly, USP13 protein is downregulated in human breast tumours and correlates with PTEN protein levels. These findings identify USP13 as a tumour-suppressing protein that functions through deubiquitylation and stabilization of PTEN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: USP13 is a PTEN-interacting deubiquitylase that regulates PTEN and AKT signalling.
Figure 2: USP13 regulates the PTEN protein level but not its subcellular localization.
Figure 3: USP13 directly interacts with and deubiquitylates PTEN.
Figure 4: USP13 stabilizes PTEN protein.
Figure 5: Loss of USP13 promotes tumour growth and glycolysis through downregulation of PTEN.
Figure 6: USP13 suppresses tumorigenesis and glycolysis in PTEN-positive but not PTEN-null breast cancer cells.
Figure 7: USP13 protein is downregulated in human breast cancer and correlates with PTEN protein levels.

Similar content being viewed by others

References

  1. Leevers, S. J., Vanhaesebroeck, B. & Waterfield, M. D. Signalling through phosphoinositide 3-kinases: the lipids take centre stage. Curr. Opin. Cell Biol. 11, 219–225 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Maehama, T. & Dixon, J. E. The tumour suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273, 13375–13378 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P. P. Pten is essential for embryonic development and tumour suppression. Nat. Genet. 19, 348–355 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Garcia-Cao, I. et al. Systemic elevation of PTEN induces a tumour-suppressive metabolic state. Cell 149, 49–62 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Song, M. S., Salmena, L. & Pandolfi, P. P. The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell Biol. 13, 283–296 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat. Genet. 16, 64–67 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Steck, P. A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet. 15, 356–362 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Hollander, M. C., Blumenthal, G. M. & Dennis, P. A. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat. Rev. Cancer 11, 289–301 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi, Y., Paluch, B. E., Wang, X. & Jiang, X. PTEN at a glance. J. Cell Sci. 125, 4687–4692 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, X. & Jiang, X. Post-translational regulation of PTEN. Oncogene 27, 5454–5463 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Fata, J. E., Debnath, S., Jenkins, E. C. Jr. & Fournier, M. V. Nongenomic mechanisms of PTEN regulation. Int. J. Cell Biol. 2012, 379685 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Trotman, L. C. et al. Ubiquitination regulates PTEN nuclear import and tumour suppression. Cell 128, 141–156 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, X. et al. NEDD4-1 is a proto-oncogenic ubiquitin ligase for PTEN. Cell 128, 129–139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maddika, S. et al. WWP2 is an E3 ubiquitin ligase for PTEN. Nat. Cell Biol. 13, 728–733 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Van Themsche, C., Leblanc, V., Parent, S. & Asselin, E. X-linked inhibitor of apoptosis protein (XIAP) regulates PTEN ubiquitination, content, and compartmentalization. J. Biol. Chem. 284, 20462–20466 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ahmed, S.F. et al. The chaperone-assisted E3 ligase C terminus of Hsc70-interacting protein (CHIP) targets PTEN for proteasomal degradation. J. Biol. Chem. 287, 15996–16006 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Song, M. S. et al. The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 455, 813–817 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wilkinson, K. D. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J. 11, 1245–1256 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Weigelt, B., Warne, P. H. & Downward, J. PIK3CA mutation, but not PTEN loss of function, determines the sensitivity of breast cancer cells to mTOR inhibitory drugs. Oncogene 30, 3222–3233 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Hollestelle, A., Elstrodt, F., Nagel, J. H., Kallemeijn, W. W. & Schutte, M. Phosphatidylinositol-3-OH kinase or RAS pathway mutations in human breast cancer cell lines. Mol. Cancer Res. 5, 195–201 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Zhao, X., Fiske, B., Kawakami, A., Li, J. & Fisher, D. E. Regulation of MITF stability by the USP13 deubiquitinase. Nat. Commun. 2, 414 (2011).

    Article  PubMed  Google Scholar 

  23. Song, M. S. et al. Nuclear PTEN regulates the APC-CDH1 tumour-suppressive complex in a phosphatase-independent manner. Cell 144, 187–199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, J. O. et al. Crystal structure of the PTEN tumour suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99, 323–334 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Elstrom, R. L. et al. Akt stimulates aerobic glycolysis in cancer cells. Cancer Res. 64, 3892–3899 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Manning, B. D. & Cantley, L. C. AKT/PKB signalling: navigating downstream. Cell 129, 1261–1274 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  PubMed  Google Scholar 

  28. Gustafson, S., Zbuk, K. M., Scacheri, C. & Eng, C. Cowden syndrome. Semin. Oncol. 34, 428–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Alimonti, A. et al. Subtle variations in Pten dose determine cancer susceptibility. Nat. Genet. 42, 454–458 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Perez-Tenorio, G. et al. PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer. Clin. Cancer Res. 13, 3577–3584 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, D. et al. LIFR is a breast cancer metastasis suppressor upstreamof the Hippo-YAP pathway and a prognostic marker. Nat. Med. 18, 1511–1517 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yuan, J., Luo, K., Zhang, L., Cheville, J. C. & Lou, Z. USP10 regulates p53 localization and stability by deubiquitinating p53. Cell 140, 384–396 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Giaccia, A. J. & Kastan, M. B. The complexity of p53 modulation: emerging patterns from divergent signals. Genes. Dev. 12, 2973–2983 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Salmena, L., Carracedo, A. & Pandolfi, P. P. Tenets of PTEN tumour suppression. Cell 133, 403–414 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Lee, C., Kim, J.S. & Waldman, T. PTEN gene targeting reveals a radiation-induced size checkpoint in human cancer cells. Cancer Res. 64, 6906–6914 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim, J. S., Lee, C., Bonifant, C. L., Ressom, H. & Waldman, T. Activation of p53-dependent growth suppression in human cells by mutations in PTEN or PIK3CA. Mol. Cell Biol. 27, 662–677 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometricsequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Elias, J. E. & Gygi, S. P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Yuan, Z. Gong, A. Sorokin, J. Wang, N. Li, L. Feng and L. Li for reagents and technical assistance. This work is supported by US National Institutes of Health grants R00CA138572 (to L.M.) and R01CA166051 (to L.M.) and a Cancer Prevention and Research Institute of Texas Scholar Award R1004 (to L.M.).

Author information

Authors and Affiliations

Authors

Contributions

J.Z. and L.M. conceived and designed the study and wrote the manuscript. J.Z. performed most of the experiments. P.Z. contributed to DUB library construction and in vitro deubiquitylation assays. Y.W. and M-C.H. performed studies on tissue microarrays of human patient samples. H-l.P. performed xenograft implantation. W.W. and J.C. assisted with tandem affinity purification and mass spectrometric analysis. S.M. provided the PTEN mutant constructs. M.W. assisted with animal care. D.C. assisted with lactate secretion assays. Y.S. maintained shRNA and ORF clones and assisted with glucose uptake assays.

Corresponding author

Correspondence to Li Ma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Effects of five PTEN-interacting deubiquitinases on cell proliferation and colony formation.

(a) Five FLAG-tagged DUBs were expressed in MCF7 cells, immunoprecipitated with FLAG beads and immunoblotted with antibodies to PTEN and FLAG. (b) Growth curves of MCF7 cells transduced with USP7, USP8, USP10, USP13 or USP39. (c, d) Images (c) and quantification (d) of anchorage-independent growth of MCF7 cells transduced with USP7, USP8, USP10, USP13 or USP39. Data in (b) and (d) are the mean of 3 wells per group and error bars indicate s.e.m. The experiments were repeated 3 times. Statistical significance was determined by two-tailed, unpaired Student’s t test. Uncropped images of blots are shown in Supplementary Fig. 6.

Supplementary Figure 2 Regulation of PTEN and AKT signaling by USP13.

(a) Immunoblotting of USP13, PTEN and β-actin in a series of human breast cancer cell lines. (b) Immunoblotting of USP13, PTEN, p-AKT, AKT, p-FOXO1/3, FOXO1 and HSP90 in MDA-MB-231 cells transduced with USP13 alone or in combination with PTEN shRNA. (c) Immunoblotting of FLAG–USP13, HA-GFP and β-actin in 293T cells transfected with USP13 shRNA in combination with FLAG-tagged wild-type USP13 or an RNAi-resistant mutant of USP13 (USP13-RE). Co-transfected HA-GFP serves as the control for transfection. (d) Immunoblotting of USP13, PTEN, p-AKT, AKT, p-FOXO1/3, FOXO1 and HSP90 in USP13 shRNA-transduced SUM159 cells with or without ectopic expression of an RNAi-resistant mutant of USP13 (USP13-RE). (e) Immunoblotting of USP13, PTEN, p-AKT, AKT and β-actin in USP13 shRNA-transduced SUM159 cells with or without ectopic expression of PTEN. Cells were serum-starved and treated with 10 ng/ml insulin for 15 minutes. Uncropped images of blots are shown in Supplementary Fig. 6.

Supplementary Figure 3 USP13 does not alter PTEN mRNA levels.

(a) qPCR of PTEN and USP13 in USP13 shRNA-transduced SUM159 cells. (b) qPCR of PTEN in MDA-MB-231 cells transduced with wild-type USP13 or the USP13C345A mutant. Data in (a) and (b) are the mean of 3 triplicates per group and error bars indicate s.e.m. The experiments were repeated 3 times.

Supplementary Figure 4 USP7, USP10, USP8 and USP39 do not regulate PTEN protein levels.

Immunoblotting of the USP, PTEN and HSP90 in SUM159 cells with knockdown of USP7 (a), USP10 (b), USP8 (c) or USP39 (d). Uncropped images of blots are shown in Supplementary Fig. 6.

Supplementary Figure 5 Validation of the PTEN- and USP13-specific antibodies for immunohistochemistry.

The PTEN antibody was validated using BT549 (PTEN-null) and MCF7 (PTEN-positive) cell lines. The USP13 antibody was validated using parental SUM159 cells (USP13-positive) and USP13 shRNA-transduced SUM159 cells (USP13-depleted). To prepare sections, we fixed the cell pellet in formalin and embedded it in paraffin. Brown staining indicates positive immunoreactivity. Scale bar: 50 μm.

Supplementary Table 1 List of PTEN-interacting proteins identified by TAP-MS analysis.
Supplementary Table 2 List of USP13-interacting proteins identified by TAP-MS analysis.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2937 kb)

Supplementary Table 1

Supplementary Information (XLSX 78 kb)

Supplementary Table 2

Supplementary Information (XLSX 9 kb)

Supplementary Table 3

Supplementary Information (XLSX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Zhang, P., Wei, Y. et al. Deubiquitylation and stabilization of PTEN by USP13. Nat Cell Biol 15, 1486–1494 (2013). https://doi.org/10.1038/ncb2874

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2874

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing