Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Homogeneous low-molecular-weight heparins with reversible anticoagulant activity

Abstract

Low-molecular-weight heparins (LMWHs) are carbohydrate-based anticoagulants clinically used to treat thrombotic disorders, but impurities, structural heterogeneity or functional irreversibility can limit treatment options. We report a series of synthetic LMWHs prepared by cost-effective chemoenzymatic methods. The high activity of one defined synthetic LMWH against human factor Xa (FXa) was reversible in vitro and in vivo using protamine, demonstrating that synthetically accessible constructs can have a critical role in the next generation of LMWHs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted structures and schematic synthesis of synthetic LMWHs.
Figure 2: Determination of the clearance, anti-FXa activity and sensitivity to protamine neutralization of synthetic LMWHs.

Similar content being viewed by others

References

  1. Kahn, S.R. et al. Chest 141 (suppl.), e195S–e226S (2012).

    Article  CAS  Google Scholar 

  2. Hirsh, J., O'Donnell, M.O. & Eikelboom, J.W. Circulation 116, 552–560 (2007).

    Article  CAS  Google Scholar 

  3. Arepally, G.M. & Ortel, T.L. N. Engl. J. Med. 355, 809–817 (2006).

    Article  CAS  Google Scholar 

  4. Linhardt, R.J. & Liu, J. Curr. Opin. Pharmacol. 12, 217–219 (2012).

    Article  CAS  Google Scholar 

  5. Melnikova, I. Nat. Rev. Drug Discov. 8, 353–354 (2009).

    Article  CAS  Google Scholar 

  6. Harder, S. J. Clin. Pharmacol. 52, 964–975 (2012).

    Article  CAS  Google Scholar 

  7. Weitz, J.I. & Linkins, L.A. Expert Opin. Investig. Drugs 16, 271–282 (2007).

    Article  CAS  Google Scholar 

  8. Petitou, M. & van Boeckel, C.A.A. Angew. Chem. Int. Ed. 43, 3118–3133 (2004).

    Article  CAS  Google Scholar 

  9. Moon, A.F. et al. Proc. Natl. Acad. Sci. USA 109, 5265–5270 (2012).

    Article  CAS  Google Scholar 

  10. Chen, J., Jones, C.L. & Liu, J. Chem. Biol. 14, 986–993 (2007).

    Article  CAS  Google Scholar 

  11. Zhang, Z. et al. J. Am. Chem. Soc. 130, 12998–13007 (2008).

    Article  CAS  Google Scholar 

  12. Xu, Y. et al. Science 334, 498–501 (2011).

    Article  CAS  Google Scholar 

  13. Zhang, Z. et al. J. Med. Chem. 51, 5498–5501 (2008).

    Article  CAS  Google Scholar 

  14. Turnbull, J.E. Science 334, 462–463 (2011).

    Article  CAS  Google Scholar 

  15. Liu, H., Zhang, Z. & Linhardt, R.J. Nat. Prod. Rep. 26, 313–321 (2009).

    Article  CAS  Google Scholar 

  16. Sheng, J., Xu, Y., Dulaney, S.B., Huang, X. & Liu, J. J. Biol. Chem. 287, 20996–21002 (2012).

    Article  CAS  Google Scholar 

  17. Pempe, E.H., Xu, Y., Gopalakrishnan, S., Liu, J. & Harris, E.H. J. Biol. Chem. 287, 20774–20783 (2012).

    Article  CAS  Google Scholar 

  18. Li, L., Zhang, F., Zaia, J. & Linhardt, R.J. Anal. Chem. 84, 8822–8829 (2012).

    Article  CAS  Google Scholar 

  19. Harris, E.N., Weigel, J.A. & Weigel, P.H. J. Biol. Chem. 283, 17341–17350 (2008).

    Article  CAS  Google Scholar 

  20. Martinez-Gonzalez, J. & Rodriguez, C. Expert Rev. Cardiovasc. Ther. 8, 625–634 (2010).

    Article  CAS  Google Scholar 

  21. Lu, G. et al. Nat. Med. 19, 446–451 (2013).

    Article  CAS  Google Scholar 

  22. Bianchini, E.P., Fazavana, J., Picard, V. & Borgel, D. Blood 117, 2054–2060 (2011).

    Article  CAS  Google Scholar 

  23. Atha, D.H., Lormeau, J.-C., Petitou, M., Rosenberg, R.D. & Choay, J. Biochemistry 24, 6723–6729 (1985).

    Article  CAS  Google Scholar 

  24. Lee, S. et al. Nat. Biotechnol. 31, 220–226 (2013).

    Article  CAS  Google Scholar 

  25. Petitou, M., Jacquinet, J.C., Choay, J., Lormeau, J.C. & Nassr, M. US Patent 4,818,816 (1989).

  26. Zhang, L. et al. J. Biol. Chem. 276, 42311–42321 (2001).

    Article  CAS  Google Scholar 

  27. Duncan, M.B., Chen, J., Krise, J.P. & Liu, J. Biochim. Biophys. Acta 1671, 34–43 (2004).

    Article  CAS  Google Scholar 

  28. Lee, M.K. & Lander, A.D. Proc. Natl. Acad. Sci. USA 88, 2768–2772 (1991).

    Article  CAS  Google Scholar 

  29. Liu, R. et al. J. Biol. Chem. 285, 34240–34249 (2010).

    Article  CAS  Google Scholar 

  30. Sundaram, M. et al. Proc. Natl. Acad. Sci. USA 100, 651–656 (2003).

    Article  CAS  Google Scholar 

  31. Harris, E.N., Weigel, J.A. & Weigel, P.H. J. Biol. Chem. 279, 36201–36209 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.E. Rogers for helpful discussions. This work is supported in part by US National Institutes of Health grants HL094463 (to J.L.), GM102137 (to J.L.), HL62244 (to R.J.L.), HL096972 (to R.J.L.), GM38060 (to R.J.L.) HL096679 (to R.P.) and HL117659 (to N.S.K. and R.P.). E.M.S. is supported by a US National Institutes of Health Research Training Grant (T32-HL007149). K.C. is a recipient of a Royal Thai Government fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Y.X. synthesized synthetic LMWHs and analyzed in vitro anti-FXa activity and protamine neutralization. C.C. conducted 1D and 2D NMR analysis. K.C. and E.M.S. determined the reversibility of LMWH anti-FXa activity and performed tail bleeding experiments. P.-H.H. conducted NMR analysis. L.L. did the high-resolution MS analysis. T.Q.P. expressed and purified enzymes. N.S.K. and R.P. designed and analyzed the ex vivo protamine neutralization. R.P. designed the tail bleeding experiment. J.S. helped develop synthetic routes. E.N.H. determined the metabolic pathways for synthetic LMWHs. R.J.L. did data analysis and wrote the manuscript. J.L. designed the project and wrote the manuscript. All authors participated in discussions and critically read the manuscript.

Corresponding authors

Correspondence to Robert J Linhardt or Jian Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1 and 2, Supplementary Note and Supplementary Figures 1–36. (PDF 8681 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Cai, C., Chandarajoti, K. et al. Homogeneous low-molecular-weight heparins with reversible anticoagulant activity. Nat Chem Biol 10, 248–250 (2014). https://doi.org/10.1038/nchembio.1459

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1459

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing