Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

An update on sphingosine-1-phosphate and other sphingolipid mediators

An Erratum to this article was published on 01 September 2010

This article has been updated

Abstract

Sphingolipids comprise a complex family of naturally occurring molecules that are enriched in lipid rafts and contribute to their unique biochemical properties. Membrane sphingolipids also serve as a reservoir for bioactive metabolites including sphingosine, ceramide, sphingosine-1-phosphate and ceramide-1-phosphate. Among these, sphingosine-1-phosphate has emerged as a central regulator of mammalian biology. Sphingosine-1-phosphate is essential for mammalian brain and cardiac development and for maturation of the systemic circulatory system and lymphatics. In addition, sphingosine-1-phosphate contributes to trafficking and effector functions of lymphocytes and other hematopoietic cells and protects against various forms of tissue injury. However, sphingosine-1-phosphate is also an oncogenic lipid that promotes tumor growth and progression. Recent preclinical and clinical investigations using pharmacological agents that target sphingosine-1-phosphate, its receptors and the enzymes required for its biosynthesis and degradation demonstrate the promise and potential risks of modulating sphingosine-1-phosphate signaling in treatment strategies for autoimmunity, cancer, cardiovascular disease and other pathological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The sphingolipid metabolic pathway.
Figure 2: Sphingodynamics.
Figure 3: S1P signaling in the nucleus.
Figure 4: S1P signaling in immunity and tissue injury.

Similar content being viewed by others

Change history

  • 20 July 2010

    In the version of this article initially published, the DNA molecule and the SphK2 protein shape were missing from Figure 3. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Holthuis, J.C., Pomorski, T., Raggers, R.J., Sprong, H. & Van Meer, G. The organizing potential of sphingolipids in intracellular membrane transport. Physiol. Rev. 81, 1689–1723 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Merrill, A.H.J. & Sandhoff, K. Sphingolipids: metabolism and cell signaling. in Biochemistry of Lipids, Lipoproteins and Membranes (eds. D.E. Vance & J.E. Vance) 373–407 (Elsevier, 2002).

    Chapter  Google Scholar 

  3. Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Brinkmann, V. et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J. Biol. Chem. 277, 21453–21457 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Lahiri, S. & Futerman, A. The metabolism and function of sphingolipids and glycosphingolipids. Cell. Mol. Life Sci. 64, 2270–2284 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Hannun, Y.A. & Obeid, L.M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9, 139–150 (2008).

    Article  CAS  Google Scholar 

  7. Zheng, W. et al. Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim. Biophys. Acta 1758, 1864–1884 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Han, G. et al. Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities. Proc. Natl. Acad. Sci. USA 106, 8186–8191 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Breslow, D.K. et al. Orm family proteins mediate sphingolipid homeostasis. Nature 463, 1048–1053 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chalfant, C.E. & Spiegel, S. Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J. Cell Sci. 118, 4605–4612 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Shida, D., Takabe, K., Kapitonov, D., Milstien, S. & Spiegel, S. Targeting SphK1 as a new strategy against cancer. Curr. Drug Targets 9, 662–673 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pyne, S., Lee, S.C., Long, J. & Pyne, N.J. Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease. Cell. Signal. 21, 14–21 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Alemany, R., van Koppen, C.J., Danneberg, K., Ter Braak, M. & Meyer Zu Heringdorf, D. Regulation and functional roles of sphingosine kinases. Naunyn Schmiedebergs Arch. Pharmacol. 374, 413–428 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Mizugishi, K. et al. Essential role for sphingosine kinases in neural and vascular development. Mol. Cell. Biol. 25, 11113–11121 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gillies, L. et al. The sphingosine 1-phosphate receptor 5 and sphingosine kinases 1 and 2 are localised in centrosomes: possible role in regulating cell division. Cell. Signal. 21, 675–684 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Jarman, K.E., Moretti, P.A., Zebol, J.R. & Pitson, S.M. Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium- and integrin-binding protein 1. J. Biol. Chem. 285, 483–492 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Mizugishi, K. et al. Maternal disturbance in activated sphingolipid metabolism causes pregnancy loss in mice. J. Clin. Invest. 117, 2993–3006 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hait, N.C. et al. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 325, 1254–1257 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weigert, A. et al. Sphingosine kinase 2 deficient tumor xenografts show impaired growth and fail to polarize macrophages towards an anti-inflammatory phenotype. Int. J. Cancer 125, 2114–2121 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Lai, W.Q. et al. Distinct roles of sphingosine kinase 1 and 2 in murine collagen-induced arthritis. J. Immunol. 183, 2097–2103 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Wacker, B.K., Park, T.S. & Gidday, J.M. Hypoxic preconditioning-induced cerebral ischemic tolerance: role of microvascular sphingosine kinase 2. Stroke 40, 3342–3348 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu, H. et al. Sphingosine kinase type 2 is a putative BH3-Only protein that induces apoptosis. J. Biol. Chem. 278, 40330–40336 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Weigert, A. et al. Cleavage of sphingosine kinase 2 by caspase-1 provokes its release from apoptotic cells. Blood 115, 3531–3540 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Don, A.S. & Rosen, H. A lipid binding domain in sphingosine kinase 2. Biochem. Biophys. Res. Commun. 380, 87–92 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Samy, E.T. et al. Cutting edge: Modulation of intestinal autoimmunity and IL-2 signaling by sphingosine kinase 2 independent of sphingosine 1-phosphate. J. Immunol. 179, 5644–5648 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Pappu, R. et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316, 295–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Sigal, Y.J., McDermott, M.I. & Morris, A.J. Integral membrane lipid phosphatases/phosphotransferases: common structure and diverse functions. Biochem. J. 387, 281–293 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brindley, D.N. & Pilquil, C. Lipid phosphate phosphatases and signaling. J. Lipid Res. 50 Suppl, S225–S230 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kirby, R.J. et al. Dynamic regulation of sphingosine-1-phosphate homeostasis during development of mouse metanephric kidney. Am. J. Physiol. Renal Physiol. 296, F634–F641 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Giussani, P. et al. Sphingosine-1-phosphate phosphohydrolase regulates endoplasmic reticulum-to-golgi trafficking of ceramide. Mol. Cell. Biol. 26, 5055–5069 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peter, B.F. et al. Role of sphingosine-1-phosphate phosphohydrolase 1 in the regulation of resistance artery tone. Circ. Res. 103, 315–324 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mechtcheriakova, D. et al. FTY720-phosphate is dephosphorylated by lipid phosphate phosphatase 3. FEBS Lett. 581, 3063–3068 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Serra, M. & Saba, J.D. Sphingosine 1-phosphate lyase, a key regulator of sphingosine 1-phosphate signaling and function. Adv. Enzyme Regul. 50, 349–362 (2010).

    Article  PubMed  Google Scholar 

  34. Zhan, X. & Desiderio, D.M. Nitroproteins from a human pituitary adenoma tissue discovered with a nitrotyrosine affinity column and tandem mass spectrometry. Anal. Biochem. 354, 279–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Mukhopadhyay, D., Howell, K.S., Riezman, H. & Capitani, G. Identifying key residues of sphinganine-1-phosphate lyase for function in vivo and in vitro. J. Biol. Chem. 283, 20159–20169 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Vogel, P. et al. Incomplete inhibition of sphingosine 1-phosphate lyase modulates immune system function yet prevents early lethality and non-lymphoid lesions. PLoS ONE 4, e4112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hagen, N. et al. Subcellular origin of sphingosine-1-phosphate is essential for its toxic effect in lyase deficient neurons. J. Biol. Chem. 284, 11346–11353 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bektas, M. et al. Sphingosine-1-phosphate lyase deficiency disrupts lipid homeostasis in liver. J. Biol. Chem. 285, 10880–10889 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dobrosotskaya, I.Y., Seegmiller, A., Brown, M., Goldstein, J. & Rawson, R. Regulation of SREBP processing and membrane lipid production by phospholipids in Drosophila. Science 296, 879–883 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Stratford, S., Hoehn, K., Liu, F. & Summers, S. Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J. Biol. Chem. 279, 36608–36615 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, K. et al. Redirection of sphingolipid metabolism towards de novo synthesis of ethanolamine in Leishmania. EMBO J. 26, 1094–1104 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bourquin, F., Riezman, H., Capitani, G. & Gerhard, M. Structure (in press).

  43. Kono, M., Allende, M.L. & Proia, R.L. Sphingosine-1-phosphate regulation of mammalian development. Biochim. Biophys. Acta 1781, 435–441 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Choi, J.W., Lee, C.W. & Chun, J. Biological roles of lysophospholipid receptors revealed by genetic null mice: an update. Biochim. Biophys. Acta 1781, 531–539 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Skoura, A. & Hla, T. Lysophospholipid receptors in vertebrate development, physiology, and pathology. J. Lipid Res. 50 Suppl, S293–S298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Strochlic, L., Dwivedy, A., van Horck, F.P., Falk, J. & Holt, C.E. A role for S1P signalling in axon guidance in the Xenopus visual system. Development 135, 333–342 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Miron, V.E. et al. Fingolimod (FTY720) enhances remyelination following demyelination of organotypic cerebellar slices. Am. J. Pathol. doi:10.2353/ajpath.2010.091234 (22 April 2010).

  48. Olivera, A. et al. Sphingosine kinase 1 and sphingosine-1-phosphate receptor 2 are vital to recovery from anaphylactic shock in mice. J. Clin. Invest. 120, 1429–1440 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pébay, A. et al. Essential roles of sphingosine-1-phosphate and platelet-derived growth factor in the maintenance of human embryonic stem cells. Stem Cells 23, 1541–1548 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Bai, A., Hu, H., Yeung, M. & Chen, J. Kruppel-like factor 2 controls T cell trafficking by activating L-selectin (CD62L) and sphingosine-1-phosphate receptor 1 transcription. J. Immunol. 178, 7632–7639 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Jenne, C.N. et al. T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J. Exp. Med. 206, 2469–2481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sanchez, T. & Hla, T. Structural and functional characteristics of S1P receptors. J. Cell. Biochem. 92, 913–922 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Rosen, H., Gonzalez-Cabrera, P.J., Sanna, M.G. & Brown, S. Sphingosine 1-phosphate receptor signaling. Annu. Rev. Biochem. 78, 743–768 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Mitra, P. et al. Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc. Natl. Acad. Sci. USA 103, 16394–16399 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Kobayashi, N., Yamaguchi, A. & Nishi, T. Characterization of the ATP-dependent sphingosine 1-phosphate transporter in rat erythrocytes. J. Biol. Chem. 284, 21192–21200 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kupperman, E., An, S., Osborne, N., Waldron, S. & Stainier, D.Y. A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development. Nature 406, 192–195 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Kawahara, A. et al. The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323, 524–527 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Nakano, Y. et al. Mutations in the novel membrane protein spinster interfere with programmed cell death and cause neural degeneration in Drosophila melanogaster. Mol. Cell. Biol. 21, 3775–3788 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hinkovska-Galcheva, V., VanWay, S.M., Shanley, T.P. & Kunkel, R.G. The role of sphingosine-1-phosphate and ceramide-1-phosphate in calcium homeostasis. Curr. Opin. Investig. Drugs 9, 1192–1205 (2008).

    CAS  PubMed  Google Scholar 

  60. Estrada, R. et al. Ligand-induced nuclear translocation of S1P(1) receptors mediates Cyr61 and CTGF transcription in endothelial cells. Histochem. Cell Biol. 131, 239–249 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Liao, J.J. et al. Distinctive T cell-suppressive signals from nuclearized type 1 sphingosine 1-phosphate G protein-coupled receptors. J. Biol. Chem. 282, 1964–1972 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Adachi-Yamada, T. et al. De novo synthesis of sphingolipids is required for cell survival by down-regulating c-Jun N-terminal kinase in Drosophila imaginal discs. Mol. Cell. Biol. 19, 7276–7286 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dasgupta, U. et al. Ceramide kinase regulates phospholipase C and phosphatidylinositol 4, 5, bisphosphate in phototransduction. Proc. Natl. Acad. Sci. USA 106, 20063–20068 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Schmahl, J., Rizzolo, K. & Soriano, P. The PDGF signaling pathway controls multiple steroid-producing lineages. Genes Dev. 22, 3255–3267 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zammit, P.S., Partridge, T.A. & Yablonka-Reuveni, Z. The skeletal muscle satellite cell: the stem cell that came in from the cold. J. Histochem. Cytochem. 54, 1177–1191 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Kharel, Y. et al. Sphingosine kinase 2 is required for modulation of lympocyte traffic by FTY720 J Biol. Chem. 280, 36865–36872 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Rivera, J., Proia, R.L. & Olivera, A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat. Rev. Immunol. 8, 753–763 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shimizu, T. Lipid mediators in health and disease: enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 49, 123–150 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Schwab, S.R. & Cyster, J.G. Finding a way out: lymphocyte egress from lymphoid organs. Nat. Immunol. 8, 1295–1301 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Zachariah, M.A. & Cyster, J.G. Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction. Science doi:10.1126/science.1188222 (22 April 2010).

  72. Kappos, L. et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 362, 387–401 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Cohen, J.A. et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 362, 402–415 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Ratajczak, M.Z. et al. Novel insight into stem cell mobilization-Plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 24, 976–985 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gossens, K. et al. Thymic progenitor homing and lymphocyte homeostasis are linked via S1P-controlled expression of thymic P-selectin/CCL25. J. Exp. Med. 206, 761–778 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Weber, C. K.A., Münk, A., Bode, C., Van Veldhoven, P.P. & Gräler, M.H. Discontinued postnatal thymocyte development in sphingosine 1-phosphate-lyase-deficient mice. J. Immunol. 183, 4292–4301 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Ishii, M. et al. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458, 524–528 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pereira, J.P., Xu, Y. & Cyster, J.G. A role for S1P and S1P1 in immature-B cell egress from mouse bone marrow. PLoS ONE 5, e9277 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Allende, M.L. et al. S1P1 receptor directs the release of immature B cells from bone marrow into blood. J. Exp. Med. doi: 10.1084/jem.20092210 (19 April 2010).

  80. Wolf, A.M. et al. The sphingosine 1-phosphate receptor agonist FTY720 potently inhibits regulatory T cell proliferation in vitro and in vivo. J. Immunol. 183, 3751–3760 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Michaud, J., Im, D. & Hla, T. Inhibitory role of sphingosine 1-phosphate receptor 2 in macrophage recruitment during inflammation. J. Immunol. 184, 1475–1483 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Means, C.K. et al. Sphingosine 1-phosphate S1P2 and S1P3 receptor-mediated Akt activation protects against in vivo myocardial ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 292, H2944–H2951 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Hasegawa, Y., Suzuki, H., Sozen, T., Rolland, W. & Zhang, J.H. Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke 41, 368–374 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Morita, Y. et al. Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat. Med. 6, 1109–1114 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Sattler, K. & Levkau, B. Sphingosine-1-phosphate as a mediator of high-density lipoprotein effects in cardiovascular protection. Cardiovasc. Res. 82, 201–211 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Xia, P. et al. An oncogenic role of sphingosine kinase. Curr. Biol. 10, 1527–1530 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Visentin, B. et al. Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9, 225–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Oskouian, B. et al. Sphingosine-1-phosphate lyase potentiates apoptosis via p53- and p38-dependent pathways and is downregulated in colon cancer. Proc. Natl. Acad. Sci. USA 103, 17384–17389 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Colié, S. et al. Disruption of sphingosine 1-phosphate lyase confers resistance to chemotherapy and promotes oncogenesis through Bcl-2/Bcl-xL upregulation. Cancer Res. 69, 9346–9353 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Cattoretti, G. et al. Targeted disruption of the S1P2 sphingosine 1-phosphate receptor gene leads to diffuse large B-cell lymphoma formation. Cancer Res. 69, 8686–8692 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Levi, M., Meijler, M.M., Gomez-Munoz, A. & Zor, T. Distinct receptor-mediated activities in macrophages for natural ceramide-1-phosphate (C1P) and for phospho-ceramide analogue-1 (PCERA-1). Mol. Cell. Endocrinol. 314, 248–255 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Wijesinghe, D.S. et al. Substrate specificity of human ceramide kinase. J. Lipid Res. 46, 2706–2716 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Granado, M.H. et al. Ceramide 1-phosphate (C1P) promotes cell migration Involvement of a specific C1P receptor. Cell. Signal. 21, 405–412 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Lankalapalli, R.S., Ouro, A., Arana, L., Gomez-Munoz, A. & Bittman, R. Caged ceramide 1-phosphate analogues: synthesis and properties. J. Org. Chem. 74, 8844–8847 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vacaru, A.M. et al. Sphingomyelin synthase-related protein SMSr controls ceramide homeostasis in the ER. J. Cell Biol. 185, 1013–1027 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ternes, P., Brouwers, J.F., van den Dikkenberg, J. & Holthuis, J.C. Sphingomyelin synthase SMS2 displays dual activity as ceramide phosphoethanolamine synthase. J. Lipid Res. 50, 2270–2277 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Eichler, F.S. et al. Overexpression of the wild-type SPT1 subunit lowers desoxysphingolipid levels and rescues the phenotype of HSAN1. J. Neurosci. 29, 14646–14651 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Symolon, H., Schmelz, E., Dillehay, D. & Merrill, A.J. Dietary soy sphingolipids suppress tumorigenesis and gene expression in 1,2-dimethylhydrazine-treated CF1 mice and ApcMin/+ mice. J. Nutr. 134, 1157–1161 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Fyrst, H. et al. Natural sphingadienes inhibit Akt-dependent signaling and prevent intestinal tumorigenesis. Cancer Res. 69, 9457–9464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yamaji, T., Kumagai, K., Tomishige, N. & Hanada, K. Two sphingolipid transfer proteins, CERT and FAPP2: their roles in sphingolipid metabolism. IUBMB Life 60, 511–518 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Mao, C. & Obeid, L.M. Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim. Biophys. Acta 1781, 424–434 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health Public Health Service grants CA77528, CA129438, RAT005336 and GM66954 (J.D.S.). We thank B. Oskouian for careful review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie D Saba.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fyrst, H., Saba, J. An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat Chem Biol 6, 489–497 (2010). https://doi.org/10.1038/nchembio.392

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.392

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing