Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Left ventricular dyssynchrony in patients with heart failure: pathophysiology, diagnosis and treatment

Abstract

The number of patients with chronic heart failure is increasing rapidly in the Western world. Despite the introduction of new pharmacologic therapies, the prognosis of these patients remains poor. Left ventricular (LV) dyssynchrony is a frequently observed feature in patients with heart failure, and is recognized as an important predictor of poor outcome if left untreated. The presence of LV dyssynchrony leads to inefficient LV contraction with a decreased cardiac output. Moreover, patients with LV dyssynchrony are at increased risk of adverse cardiac events. New therapeutic options targeted at restoring normal mechanical synchrony, such as cardiac resynchronization therapy, have been shown to improve clinical symptoms and prognosis in patients with heart failure. The beneficial effects of cardiac resynchronization therapy are predominantly mediated by this treatment's ability to reduce LV dyssynchrony. Given these results, adequate identification of LV dyssynchrony in patients with heart failure is of paramount importance. Several new imaging techniques are proving useful for diagnosis of LV dyssynchrony. In particular, advanced echocardiographic techniques (e.g. tissue Doppler imaging) and conductance catheter techniques are two accurate methods for quantification of LV dyssynchrony. In this review, we discuss the pathophysiology, diagnosis and treatment of LV dyssynchrony in patients with heart failure.

Key Points

  • Various types of dyssynchronous activation are seen in heart failure, such as atrioventricular dyssynchrony, interventricular dyssynchrony and left intraventricular dyssynchrony

  • Left ventricular (LV) dyssynchrony in heart failure patients results in ineffective LV systolic function and worsens prognosis

  • Promising results in patients with drug-refractory heart failure are reviving interest in the possible use of cardiac resynchronization therapy for LV dyssynchrony reduction

  • LV dyssynchrony is present in 70% of patients with a wide QRS complex and 30% with a narrow QRS complex, making this feature a weak marker of LV dyssynchrony

  • New echocardiographic techniques, such as tissue Doppler imaging, provide quick and accurate quantification of LV dyssynchrony

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tracing derived from color-coded tissue Doppler imaging, four-chamber view, in a normal individual.
Figure 2: Tracings derived from color-coded tissue Doppler images, four-chamber views.
Figure 3: Segmental volume signals illustrating global left ventricular volume and left ventricular pressure from the apex to the base.

Similar content being viewed by others

References

  1. Jessup M and Brozena S (2003) Heart failure. N Engl J Med 348: 2007–2018

    Article  Google Scholar 

  2. American Heart Association (2005) Heart disease and stroke statistics—2005 update. [http://www.americanheart.org/downloadable/heart/ 1105390918119HDSStats2005Update.pdf] (accessed 11 August 2005)

  3. Garg R and Yusuf S ; Collaborative Group on ACE Inhibitor Trials (1995) Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. JAMA 273: 1450–1456

    Article  CAS  Google Scholar 

  4. Farrell MH et al. (2002) β-blockers in heart failure: clinical applications. JAMA 287: 890–897

    Article  CAS  Google Scholar 

  5. Stewart S et al. (2001) More 'malignant' than cancer? Five-year survival following a first admission for heart failure. Eur J Heart Fail 3: 315–322

    Article  CAS  Google Scholar 

  6. Abraham WT et al. (2002) Cardiac resynchronization in chronic heart failure. N Engl J Med 346: 1845–1853

    Article  Google Scholar 

  7. Bristow MR et al. (2004) Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 350: 2140–2150

    Article  CAS  Google Scholar 

  8. Cleland JG et al. for the Cardiac Resynchronization—Heart Failure (CARE-HF) Study Investigators (2005) The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 352: 1539–1549

    Article  CAS  Google Scholar 

  9. Bax JJ et al. (2003) Left ventricular dyssynchrony predicts benefit of cardiac resynchronization therapy in patients with end-stage heart failure before pacemaker implantation. Am J Cardiol 92: 1238–1240

    Article  Google Scholar 

  10. Yu CM et al. (2002) Tissue Doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying regional contraction after biventricular pacing therapy in heart failure. Circulation 105: 438–445

    Article  Google Scholar 

  11. Leclercq C and Kass DA (2002) Retiming the failing heart: principles and current clinical status of cardiac resynchronization. J Am Coll Cardiol 39: 194–201

    Article  Google Scholar 

  12. Bax JJ et al. (2004) Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol 44: 1834–1840

    Article  Google Scholar 

  13. Brutsaert DL (1987) Nonuniformity: a physiologic modulator of contraction and relaxation of the normal heart. J Am Coll Cardiol 9: 341–348

    Article  CAS  Google Scholar 

  14. Heyndrickx GR et al. (1988) Effects of asynchrony on myocardial relaxation at rest and during exercise in conscious dogs. Am J Physiol 254: H817–H822

    CAS  PubMed  Google Scholar 

  15. Villari B et al. (1996) Normalization of left ventricular nonuniformity late after valve replacement for aortic stenosis. Am J Cardiol 78: 66–71

    Article  CAS  Google Scholar 

  16. Heyndrickx GR and Paulus WJ (1990) Effect of asynchrony on left ventricular relaxation. Circulation 81 (Suppl): SIII41–SIII47

    Google Scholar 

  17. Gepstein L et al. (1998) Electromechanical characterization of chronic myocardial infarction in the canine coronary occlusion model. Circulation 98: 2055–2064

    Article  CAS  Google Scholar 

  18. Curry CW et al. (2000) Mechanical dyssynchrony in dilated cardiomyopathy with intraventricular conduction delay as depicted by 3D tagged magnetic resonance imaging. Circulation 101: E2

    Article  CAS  Google Scholar 

  19. Prinzen FW et al. (1992) The time sequence of electrical and mechanical activation during spontaneous beating and ectopic stimulation. Eur Heart J 13: 535–543

    Article  CAS  Google Scholar 

  20. Breithardt OA et al. (2002) Echocardiographic quantification of left ventricular asynchrony predicts an acute hemodynamic benefit of cardiac resynchronization therapy. J Am Coll Cardiol 40: 536–545

    Article  Google Scholar 

  21. Sogaard P et al. (2002) Tissue Doppler imaging predicts improved systolic performance and reversed left ventricular remodeling during long-term cardiac resynchronization therapy. J Am Coll Cardiol 40: 723–730

    Article  Google Scholar 

  22. Pitzalis MV et al. (2005) Ventricular asynchrony predicts a better outcome in patients with chronic heart failure receiving cardiac resynchronization therapy. J Am Coll Cardiol 45: 65–69

    Article  Google Scholar 

  23. Bader H et al. (2004) Intra-left ventricular electromechanical asynchrony: a new independent predictor of severe cardiac events in heart failure patients. J Am Coll Cardiol 43: 248–256

    Article  Google Scholar 

  24. Van de Veire N et al. (2005) Global and regional parameters of dyssynchrony in ischemic and non-ischemic cardiomyopathy. Am J Cardiol 95: 421–423

    Article  Google Scholar 

  25. Auricchio A et al. (2004) Characterization of left ventricular activation in patients with heart failure and left bundle branch block. Circulation 109: 1133–1139

    Article  Google Scholar 

  26. Prinzen FW et al. (1999) Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. J Am Coll Cardiol 33: 1735–1742

    Article  CAS  Google Scholar 

  27. Spragg DD et al. (2003) Regional alterations in protein expression in the dyssynchronous failing heart. Circulation 108: 929–932

    Article  CAS  Google Scholar 

  28. Kass D (2003) Ventricular resynchronization: pathophysiology and identification of responders. Rev Cardiovasc Med 4 (Suppl 2): S3–S13

    PubMed  Google Scholar 

  29. Sweeney MO et al. (2003) Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation 107: 2932–2937

    Article  Google Scholar 

  30. Thambo JB et al. (2004) Detrimental ventricular remodeling in patients with congenital complete heart block and chronic right ventricular apical pacing. Circulation 110: 3766–3772

    Article  Google Scholar 

  31. Bleeker GB et al. (2004) Relationship between QRS duration and left ventricular dyssynchrony in patients with end-stage heart failure. J Cardiovasc Electrophysiol 15: 544–549

    Article  Google Scholar 

  32. Yu CM et al. (2003) High prevalence of left ventricular systolic and diastolic asynchrony in patients with congestive heart failure and normal QRS duration. Heart 89: 54–60

    Article  Google Scholar 

  33. Ghio S et al. (2004) Interventricular and intraventricular dyssynchrony are common in heart failure patients, regardless of QRS duration. Eur Heart J 25: 571–578

    Article  Google Scholar 

  34. Fauchier L et al. (2003) Reliability of QRS duration on surface electrocardiogram to identify ventricular dyssynchrony in patients with idiopathic dilated cardiomyopathy. Am J Cardiol 92: 341–344

    Article  Google Scholar 

  35. Yu CM et al. (2004) Tissue Doppler imaging is superior to strain rate imaging and postsystolic shortening on the prediction of reverse remodeling in both ischemic and nonischemic heart failure after cardiac resynchronization therapy. Circulation 110: 66–73

    Article  Google Scholar 

  36. Schreuder JJ et al. (2000) Acute and short-term effects of partial left ventriculectomy in dilated cardiomyopathy: assessment by pressure-volume loops. J Am Coll Cardiol 36: 2104–2114

    Article  CAS  Google Scholar 

  37. Steendijk P et al. (2004) Quantification of left ventricular mechanical dyssynchrony by conductance catheter in heart failure patients. Am J Physiol Heart Circ Physiol 286: H723–H730

    Article  CAS  Google Scholar 

  38. Baan J et al. (1984) Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 70: 812–823

    Article  CAS  Google Scholar 

  39. Kass DA et al. (1988) Use of a conductance (volume) catheter and transient inferior vena caval occlusion for rapid determination of pressure-volume relationships in man. Cathet Cardiovasc Diagn 15: 192–202

    Article  CAS  Google Scholar 

  40. Schreuder JJ et al. (2005) Acute decrease of ventricular mechanical dyssynchrony and improvement of contractile state and energy efficiency after left ventricular restoration. J Thorac Cardiovasc Surg 129: 138–145

    Article  Google Scholar 

  41. Tulner SA et al. (2005) Acute hemodynamic effects of restrictive mitral annuloplasty in patients with end-stage heart failure—analysis by pressure-volume relations. J Thorac Cardiovasc Surg 130: 33–40

    Article  Google Scholar 

  42. Steendijk P et al. (2004) Pressure-volume measurements by conductance catheter during cardiac resynchronization therapy. Eur Heart J 6 (Suppl): SD35–SD42

    Article  Google Scholar 

  43. Van Der Velde ET et al. (1992) Left ventricular segmental volume by conductance catheter and cine-CT. Eur Heart J 13 (Suppl): S15–S21

    Article  Google Scholar 

  44. Leclercq C et al. (1998) Acute hemodynamic effects of biventricular DDD pacing in patients with end-stage heart failure. J Am Coll Cardiol 32: 1825–1831

    Article  CAS  Google Scholar 

  45. Breithardt OA et al. (2003) Acute effects of cardiac resynchronization therapy on functional mitral regurgitation in advanced systolic heart failure. J Am Coll Cardiol 41: 765–770

    Article  Google Scholar 

  46. St John Sutton MG et al. (2003) Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation 107: 1985–1990

    Article  Google Scholar 

  47. Auricchio A et al. (2002) Cardiac resynchronization therapy restores optimal atrioventricular mechanical timing in heart failure patients with ventricular conduction delay. J Am Coll Cardiol 39: 1163–1169

    Article  Google Scholar 

  48. Bordachar P et al. (2004) Echocardiographic parameters of ventricular dyssynchrony validation in patients with heart failure using sequential biventricular pacing. J Am Coll Cardiol 44: 2157–2165

    Article  Google Scholar 

  49. Rossillo A et al. (2004) Impact of coronary sinus lead position on biventricular pacing: mortality and echocardiographic evaluation during follow-up. J Cardiovasc Electrophysiol 15: 1120–1125

    Article  Google Scholar 

  50. Auricchio A et al. (2003) Clinical efficacy of cardiac resynchronization therapy using left ventricular pacing in heart failure patients stratified by severity of ventricular conduction delay. J Am Coll Cardiol 42: 2109–2116

    Article  Google Scholar 

  51. Bordachar P et al. (2004) Biventricular pacing and left ventricular pacing in heart failure: similar hemodynamic improvement despite marked electromechanical differences. J Cardiovasc Electrophysiol 15: 1342–1347

    Article  Google Scholar 

  52. DiDonato M et al. (2004) Surgical ventricular restoration improves mechanical intraventricular dyssynchrony in ischemic cardiomyopathy. Circulation 109: 2536–2543

    Article  Google Scholar 

  53. DiDonato M et al.; RESTORE Group (2004) Mechanical synchrony: role of surgical ventricular restoration in correcting LV dyssynchrony during chamber rebuilding. Heart Fai Rev 9: 307–315

    Article  CAS  Google Scholar 

  54. Schreuder JJ et al. (2005) Acute decrease of left ventricular mechanical dyssynchrony and improvement of contractile state and energy efficiency after left ventricular restoration. J Thorac Cardiovasc Surg 129: 138–145

    Article  Google Scholar 

  55. Yu CM et al. (2005) Predictors of response to cardiac resynchronization therapy (PROSPECT)—study design. Am Heart J 129: 600–605

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst E van der Wall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleeker, G., Bax, J., Steendijk, P. et al. Left ventricular dyssynchrony in patients with heart failure: pathophysiology, diagnosis and treatment. Nat Rev Cardiol 3, 213–219 (2006). https://doi.org/10.1038/ncpcardio0505

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpcardio0505

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing