Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Minimal hepatic encephalopathy

Abstract

Minimal hepatic encephalopathy (MHE), formerly known as subclinical hepatic encephalopathy, is the mild cognitive impairment commonly seen in patients who have cirrhosis. Current understanding suggests that MHE forms part of the spectrum of hepatic encephalopathy, although this remains to be proven. Although traditionally viewed as having negligible clinical significance, MHE has a significant impact on quality of life. MHE often goes undiagnosed because in many patients there is no evidence of clinically overt signs of impaired cognition. In addition, the diagnostic criteria for MHE have not been standardized, which means that the exact characteristics of MHE remain in question. This Review focuses on the pathogenesis and neuropsychological findings (incorporating neuroimaging) of MHE, as well as the effect of MHE on quality of life and survival, and developments in treatment.

Key Points

  • Minimal hepatic encephalopathy (MHE), formerly known as subclinical hepatic encephalopathy, is the mild cognitive impairment commonly seen in patients who have cirrhosis

  • MHE is currently considered to be one end of the clinical spectrum of hepatic encephalopathy (a complex neuropsychiatric disorder), rather than a separate phenomenon; although the pathophysiology of hepatic encephalopathy is still being elucidated, it is known to be linked to hyperammonemia, impaired neurotransmission and cerebral metabolism

  • MHE can have adverse effects on quality of life (e.g. performance in the workplace and driving) and survival, but remains undiagnosed in many patients because they have no clinically overt signs of impaired cognition

  • The diagnostic criteria for MHE have not been standardized but rest on the patient's history, a careful physical examination, the exclusion of other neurological disorders, and the performance of neuropsychological and neurophysiological tests

  • The most established treatment for hepatic encephalopathy is lactulose, but its efficacy has never been evaluated in a placebo-controlled randomized fashion; preliminary data suggest that the use of antioxidants or antibiotics as a potential treatment for MHE warrants further study

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Suggested algorithm for assessing minimal hepatic encephalopathy in patients with cirrhosis.

Similar content being viewed by others

References

  1. Ferenci P et al. (2002) Hepatic encephalopathy—definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology 35: 716–721

    Article  PubMed  Google Scholar 

  2. Das A et al. (2001) Prevalence and natural history of subclinical hepatic encephalopathy in cirrhosis. J Gastroenterol Hepatol 16: 531–535

    Article  CAS  PubMed  Google Scholar 

  3. Romero-Gomez M et al. (2001) Subclinical hepatic encephalopathy predicts the development of overt hepatic encephalopathy. Am J Gastroenterol 96: 2718–2723

    Article  CAS  PubMed  Google Scholar 

  4. Takano T et al. (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9: 260–270

    Article  CAS  PubMed  Google Scholar 

  5. Olde Damink S et al. (2002) Interorgan ammonia and amino acids metabolism in metabolically stable patients with cirrhosis and a TIPSS. Hepatology 36: 1163–1171

    Article  CAS  PubMed  Google Scholar 

  6. Lockwood AH et al. (1991) Altered cerebral blood flow and glucose metabolism in patients with liver disease and minimal encephalopathy. J Cereb Blood Flow Metab 11: 331–336

    Article  CAS  PubMed  Google Scholar 

  7. Lockwood AH et al. (1991) Cerebral ammonia metabolism in patients with severe liver disease and minimal hepatic encephalopathy. J Cereb Blood Flow Metab 11: 337–341

    Article  CAS  PubMed  Google Scholar 

  8. Guevara M et al. (1998) Increased cerebrovascular resistance in cirrhotic patients with ascites. Hepatology 28: 39–44

    Article  CAS  PubMed  Google Scholar 

  9. Barnes EM Jr et al. (1983) Role of glutamine synthetase in the uptake and metabolism of methylammonium by Azotobacter vinelandii. J Bacteriol 156: 752–757

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jayakumar A and Barnes EM Jr (1984) The role of glutamine in regulation of ammonium transport in Azotobacter vinelandii. Arch Biochem Biophys 231: 95–101

    Article  CAS  PubMed  Google Scholar 

  11. Jayakumar A et al. (1986) Role of the Escherichia coli glnALG operon in regulation of ammonium transport. J Bacteriol 166: 281–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jayakumar A et al. (1987) Feedback inhibition of ammonium (methylammonium) ion transport in Escherichia coli by glutamine and glutamine analogs. J Bacteriol 169: 553–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jayakumar A et al. (1989) Isolation of an ammonium or methylammonium ion transport mutant of Escherichia coli and complementation by the cloned gene. J Bacteriol 171: 996–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bai G et al. (2001) Ammonia induces the mitochondrial permeability transition in primary cultures of rat astrocytes. J Neurosci Res 66: 981–991

    Article  CAS  PubMed  Google Scholar 

  15. Rama Rao KV et al. (2003) Ammonia neurotoxicity: role of the mitochondrial permeability transition. Metab Brain Dis 18: 113–127

    Article  CAS  PubMed  Google Scholar 

  16. Rama Rao KV et al. (2003) Induction of the mitochondrial permeability transition in cultured astrocytes by glutamine. Neurochem Int 43: 517–523

    Article  CAS  PubMed  Google Scholar 

  17. Jayakumar AR et al. (2004) Glutamine-induced free radical production in cultured astrocytes. Glia 46: 296–301

    Article  PubMed  Google Scholar 

  18. Norenberg MD et al. (2004) Oxidative stress in the pathogenesis of hepatic encephalopathy. Metab Brain Dis 19: 313–329

    Article  CAS  PubMed  Google Scholar 

  19. Norenberg MD et al. (2004) Ammonia neurotoxicity and the mitochondrial permeability transition. J Bioenerg Biomembr 36: 303–307

    Article  CAS  PubMed  Google Scholar 

  20. Norenberg MD et al. (2005) Mechanisms of ammonia-induced astrocyte swelling. Metab Brain Dis 20: 303–318

    Article  CAS  PubMed  Google Scholar 

  21. Rama Rao KV et al. (2005) Differential response of glutamine in cultured neurons and astrocytes. J Neurosci Res 79: 193–199

    Article  CAS  PubMed  Google Scholar 

  22. Jayakumar AR et al. (2006) Glutamine in the mechanism of ammonia-induced astrocyte swelling. Neurochem Int 48: 623–628

    Article  CAS  PubMed  Google Scholar 

  23. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65: 1–105

    Article  CAS  PubMed  Google Scholar 

  24. Chan N and Butterworth R (2006) Glutamatergic synaptic regulation deficit in liver failure: a review of molecular mechanisms. In Hepatic Encephalopathy and Nitrogen Metabolism, 160–170 (Eds Haussinger. et al.) Düsseldorf: Springer

    Chapter  Google Scholar 

  25. Vaquero J and Butterworth RF (2006) The brain glutamate system in liver failure. J Neurochem 98: 661–669

    Article  CAS  PubMed  Google Scholar 

  26. Monfort P et al. (2005) Molecular mechanisms of the alterations in NMDA receptor-dependent long-term potentiation in hyperammonemia. Metab Brain Dis 20: 265–274

    Article  CAS  PubMed  Google Scholar 

  27. Corbalan R et al. (2002) Altered modulation of soluble guanylate cyclase in lymphocytes from patients with liver disease. J Mol Med 80: 117–123

    Article  CAS  PubMed  Google Scholar 

  28. Josephs KA et al. (2005) Neurologic manifestations in welders with pallidal MRI T1 hyperintensity. Neurology 64: 2033–2039

    Article  CAS  PubMed  Google Scholar 

  29. Klos KJ et al. (2006) Brain metal concentrations in chronic liver failure patients with pallidal T1 MRI hyperintensity. Neurology 67: 1984–1989

    Article  CAS  PubMed  Google Scholar 

  30. Pujol A et al. (1993) Hyperintense globus pallidus on T1-weighted MRI in cirrhotic patients is associated with severity of liver failure. Neurology 43: 65–69

    Article  CAS  PubMed  Google Scholar 

  31. Lazeyras F et al. (2002) Persistence of mild parkinsonism 4 months after liver transplantation in patients with preoperative minimal hepatic encephalopathy: a study on neuroradiological and blood manganese changes. Transpl Int 15: 188–195

    Article  PubMed  Google Scholar 

  32. Shawcross DL et al. (2004) Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J Hepatol 40: 247–254

    Article  CAS  PubMed  Google Scholar 

  33. Wright GAK et al. (2006) The role of inflammation in hepatic encephalopathy. In Hepatic Encephalopathy and Nitrogen Metabolism, 229–242 (Eds Haussinger D. et al.) Dordrecht: Springer

    Chapter  Google Scholar 

  34. Minguez B et al. (2006) Noncirrhotic portal vein thrombosis exhibits neuropsychological and MR changes consistent with minimal hepatic encephalopathy. Hepatology 43: 707–714

    Article  PubMed  Google Scholar 

  35. Schomerus H and Hamster W (2001) Quality of life in cirrhotics with minimal hepatic encephalopathy. Metab Brain Dis 16: 37–41

    Article  CAS  PubMed  Google Scholar 

  36. Weissenborn K et al. (2001) Neuropsychological characterization of hepatic encephalopathy. J Hepatol 34: 768–773

    Article  CAS  PubMed  Google Scholar 

  37. Weissenborn K et al. (1990) Neurophysiological assessment of early hepatic encephalopathy. Electroencephalogr Clin Neurophysiol 75: 289–295

    Article  CAS  PubMed  Google Scholar 

  38. Kulisevsky J et al. (1992) Pallidal hyperintensity on magnetic resonance imaging in cirrhotic patients: clinical correlations. Hepatology 16: 1382–1388

    Article  CAS  PubMed  Google Scholar 

  39. Lezak MD (1996) Neuropsychological Assessment. New York: Oxford University Press

    Google Scholar 

  40. McCrea M et al. (1996) Neuropsychological characterization and detection of subclinical hepatic encephalopathy. Arch Neurol 53: 758–763

    Article  CAS  PubMed  Google Scholar 

  41. Folstein MF et al. (1975) Mini-Mental State: a practical method for grading the state of patients for the clinician, Journal of Psychiatric Research 12: 189–198

    Article  CAS  PubMed  Google Scholar 

  42. Tarter RE et al. (1987) Neurobehavioral correlates of cholestatic and hepatocellular disease: differentiation according to disease specific characteristics and severity of the identified cerebral dysfunction. Int J Neurosci 32: 901–910

    Article  CAS  PubMed  Google Scholar 

  43. Tarter RE et al. (1984) Nonalcoholic cirrhosis associated with neuropsychological dysfunction in the absence of overt evidence of hepatic encephalopathy. Gastroenterology 86: 1421–1427

    CAS  PubMed  Google Scholar 

  44. Howieson DB and Lezak MD (2002) The neuropsychological evaluation. In Textbook of Neuropsychiatry and Clinical Neurosciences, 217–244 (Eds Yudofsky S and Hales RE) Washington, DC: American Psychiatric Publishing

    Google Scholar 

  45. Joebges EM et al. (2003) Bradykinesia in minimal hepatic encephalopathy is due to disturbances in movement initiation. J Hepatol 38: 273–280

    Article  PubMed  Google Scholar 

  46. Weissenborn K et al. (2005) Neurological and neuropsychiatric syndromes associated with liver disease. AIDS 19 (Suppl 3): S93–S98

    Article  PubMed  Google Scholar 

  47. Ortiz M et al. (2006) Neuropsychological abnormalities in cirrhosis include learning impairment. J Hepatol 44: 104–110

    Article  PubMed  Google Scholar 

  48. Romero-Gomez M et al. (2007) Value of the critical flicker frequency in patients with minimal hepatic encephalopathy. Hepatology 45: 879–885

    Article  PubMed  Google Scholar 

  49. Bajaj JS et al. (2007) Inhibitory control test is a simple method to diagnose minimal hepatic encephalopathy and predict development of overt hepatic encephalopathy. Am J Gastroenterol 102: 754–760

    Article  PubMed  Google Scholar 

  50. Rodriguez G et al. (1987) Reduction of cerebral blood flow in subclinical hepatic encephalopathy and its correlation with plasma-free tryptophan. J Cereb Blood Flow Metab 7: 768–772

    Article  CAS  PubMed  Google Scholar 

  51. O'Carroll RE et al. (1991) Regional cerebral blood flow and cognitive function in patients with chronic liver disease. Lancet 337: 1250–1253

    Article  CAS  PubMed  Google Scholar 

  52. Trzepacz PT et al. (1994) SPECT scan and cognitive findings in subclinical hepatic encephalopathy. J Neuropsychiatry Clin Neurosci 6: 170–175

    Article  CAS  PubMed  Google Scholar 

  53. Catafau AM et al. (2000) Relationship between cerebral perfusion in frontal-limbic-basal ganglia circuits and neuropsychologic impairment in patients with subclinical hepatic encephalopathy. J Nucl Med 41: 405–410

    CAS  PubMed  Google Scholar 

  54. Morgan MY (1998) Cerebral magnetic resonance imaging in patients with chronic liver disease. Metab Brain Dis 13: 273–290

    Article  CAS  PubMed  Google Scholar 

  55. Malecki EA et al. (1999) Iron and manganese homeostasis in chronic liver disease: relationship to pallidal T1-weighted magnetic resonance signal hyperintensity. Neurotoxicology 20: 647–652

    CAS  PubMed  Google Scholar 

  56. Naegele T et al. (2000) MR imaging and (1)H spectroscopy of brain metabolites in hepatic encephalopathy: time-course of renormalization after liver transplantation. Radiology 216: 683–691

    Article  CAS  PubMed  Google Scholar 

  57. Weissenborn K et al. (2007) Correlations between MRS alterations and cerebral ammonia and glucose metabolism in cirrhotic patients with and without hepatic encephalopathy. Gut [doi:10.1136/gut.2006.110569]

    Article  PubMed  PubMed Central  Google Scholar 

  58. Huda A et al. (1998) Clinical correlation of neuropsychological tests with 1H magnetic resonance spectroscopy in hepatic encephalopathy. Psychosom Med 60: 550–556

    Article  CAS  PubMed  Google Scholar 

  59. Lockwood AH et al. (1993) Positron-emission tomographic localization of abnormalities of brain metabolism in patients with minimal hepatic encephalopathy. Hepatology 18: 1061–1068

    Article  CAS  PubMed  Google Scholar 

  60. Lockwood AH et al. (2002) Correlations between cerebral glucose metabolism and neuropsychological test performance in nonalcoholic cirrhotics. Metab Brain Dis 17: 29–40

    Article  PubMed  Google Scholar 

  61. Kale RA et al. (2006) Demonstration of interstitial cerebral edema with diffusion tensor MR imaging in type C hepatic encephalopathy. Hepatology 43: 698–706

    Article  PubMed  Google Scholar 

  62. Younossi Z et al. (2001) Assessment of utilities and health-related quality of life in patients with chronic liver disease. Am J Gastroenterol 96: 579–583

    Article  CAS  PubMed  Google Scholar 

  63. Groeneweg M et al. (1998) Subclinical hepatic encephalopathy impairs daily functioning. Hepatology 28: 45–49

    Article  CAS  PubMed  Google Scholar 

  64. Groeneweg M et al. (2000) Screening of subclinical hepatic encephalopathy. J Hepatol 32: 748–753

    Article  CAS  PubMed  Google Scholar 

  65. Marchesini G et al. (2001) Factors associated with poor health-related quality of life of patients with cirrhosis. Gastroenterology 120: 170–178

    Article  CAS  PubMed  Google Scholar 

  66. Watanabe A et al. (1995) Evaluation of neuropsychological function in patients with liver cirrhosis with special reference to their driving ability. Metab Brain Dis 10: 239–248

    Article  CAS  PubMed  Google Scholar 

  67. Nyberg S et al. (2006) Early experience with HEADS (hepatic encephalopathy assessment driving simulator) Advances in Transportation Studies: an International Journal: 2006 special issue, 5–15

  68. Wein C et al. (2004) Minimal hepatic encephalopathy impairs fitness to drive. Hepatology 39: 739–745

    Article  PubMed  Google Scholar 

  69. Sanyal AJ et al. (2006) Similarities and differences in outcomes of cirrhosis due to nonalcoholic steatohepatitis and hepatitis C. Hepatology 43: 682–689

    Article  PubMed  Google Scholar 

  70. Stewart C et al. (2007) Hepatic encephalopathy as a predictor of survival in patients with end stage liver disease. Liver Transplantation 13: 1366–1371

    Article  PubMed  Google Scholar 

  71. D'Amico G et al. (2006) Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. J Hepatol 44: 217–231

    Article  PubMed  Google Scholar 

  72. Abraldes JG et al. (2003) Hemodynamic response to pharmacological treatment of portal hypertension and long-term prognosis of cirrhosis. Hepatology 37: 902–908

    Article  PubMed  Google Scholar 

  73. Merkel C et al. (1989) Prognostic indicators of survival in patients with cirrhosis and esophageal varices, without previous bleeding. Am J Gastroenterol 84: 717–722

    CAS  PubMed  Google Scholar 

  74. Bustamante J et al. (1999) Prognostic significance of hepatic encephalopathy in patients with cirrhosis. J Hepatol 30: 890–895

    Article  CAS  PubMed  Google Scholar 

  75. Romero-Gomez M et al. (2004) Prognostic value of altered oral glutamine challenge in patients with minimal hepatic encephalopathy. Hepatology 39: 939–943

    Article  PubMed  Google Scholar 

  76. Quero JC and Schalm SW (1996) Subclinical hepatic encephalopathy. Semin Liver Dis 16: 321–328

    Article  CAS  PubMed  Google Scholar 

  77. Watanabe A et al. (1997) Clinical efficacy of lactulose in cirrhotic patients with and without subclinical hepatic encephalopathy. Hepatology 26: 1410–1414

    Article  CAS  PubMed  Google Scholar 

  78. Liu Q et al. (2004) Synbiotic modulation of gut flora: effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatology 39: 1441–1449

    Article  PubMed  Google Scholar 

  79. Mattarozzi K et al. (2004) Minimal hepatic encephalopathy: longitudinal effects of liver transplantation. Arch Neurol 61: 242–247

    Article  PubMed  Google Scholar 

  80. Mechtcheriakov S et al. (2004) Incomplete improvement of visuo-motor deficits in patients with minimal hepatic encephalopathy after liver transplantation. Liver Transpl 10: 77–83

    Article  PubMed  Google Scholar 

  81. Hockerstedt K et al. (1992) Encephalopathy and neuropathy in end-stage liver disease before and after liver transplantation. J Hepatol 16: 31–37

    Article  CAS  PubMed  Google Scholar 

  82. Prasad S et al. (2007) Lactulose improves cognitive functions and health-related quality of life in patients with cirrhosis who have minimal hepatic encephalopathy. Hepatology 45: 549–559

    Article  PubMed  Google Scholar 

  83. Steinbrenner H et al. (2006) Involvement of selenoprotein P in protection of human astrocytes from oxidative damage. Free Radic Biol Med 40: 1513–1523

    Article  CAS  PubMed  Google Scholar 

  84. Rothstein JD et al. (2005) Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433: 73–77

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

CAS has received financial support from the NIH (grant K23DK60018) and the Fiterman Foundation, Mayo Clinic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charmaine A Stewart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, C., Smith, G. Minimal hepatic encephalopathy. Nat Rev Gastroenterol Hepatol 4, 677–685 (2007). https://doi.org/10.1038/ncpgasthep0999

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpgasthep0999

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing