Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug Insight: pharmacology and toxicity of thiopurine therapy in patients with IBD

Abstract

Thiopurines are frequently used for the treatment of IBD. The complex pharmacology, metabolism, mechanism of action and toxicity profile of these immunosuppressive drugs have now been partly elucidated. The activity of thiopurines is partly mediated by the metabolite 6-thioguanosine 5′-triphosphate, which inhibits the function of the small GTPase Rac1, leading to apoptosis of activated T cells, and influences the conjugation of T cells with antigen-presenting cells. The activity of the enzyme thiopurine S-methyltransferase has a major influence on the bioavailability and toxicity of thiopurines, and several thiopurine metabolites might have adverse effects in patients. Myelotoxicity can be caused by grossly elevated levels of 6-thioguanine nucleotides, and elevated levels of 6-methylmercaptopurine ribonucleotides have been associated with hepatotoxicity. The sensitivity and specificity of these methylated metabolites for predicting thiopurine-induced liver enzyme abnormalities are, however, poor. 6-Thioguanine has been suggested as an alternative to the classical thiopurines azathioprine and 6-mercaptopurine for the treatment of IBD, but there are concerns about its toxicity profile, especially with regard to the induction of nodular regenerative hyperplasia of the liver. Data now suggest that the induction of nodular regenerative hyperplasia of the liver during 6-thioguanine therapy might be dose-dependent or dependent on the level of 6-thioguanine nucleotides.

Key Points

  • The pharmacological activity of thiopurine therapy is in part mediated by the specific metabolite 6-thioguanosine 5′-triphosphate, which induces apoptosis of activated T cells

  • The complex pharmacology and metabolism of thiopurines have been partly elucidated, leading to the development of novel strategies (e.g. metabolite measurements and thiopurine S-methyltransferase determination) to optimize thiopurine therapy

  • Frequent hematological and biochemical monitoring, including complete blood counts and liver tests, remain the best-accepted methods for toxicity screening

  • The frequency of nodular regenerative hyperplasia as an adverse event during thiopurine therapy is probably underestimated—the induction of this hepatotoxic feature might be thiopurine-dose-dependent or metabolite-level dependent

  • A maintenance dosage of 6-thioguanine not exceeding 25 mg daily can be considered rescue therapy exclusively for patients with IBD who are intolerant of, or resistant to, standard therapies; 6-thioguanine should only be administered in a clinical trial setting under close (hepatotoxicity) surveillance, at least until more toxicity data are available

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A simplified schematic of the metabolism of thiopurines.

Similar content being viewed by others

References

  1. Sandborn W et al. Azathioprine or 6-mercaptopurine for inducing remission in Crohn's disease. Cochrane Database of Systematic Reviews 2000, Issue 2. Art 1. No.: CD000545.pub2. doi: 10.1002/14651858.CD000545.pub2

    Google Scholar 

  2. Timmer A et al. (2007) Azathioprine and 6-mercaptopurine for maintenance of remission in ulcerative colitis. Cochrane Database of Systematic Reviews 2007, Issue 1. Art No.: CD000478.pub2. doi: 10.1002/14651858.CD000478.pub2

    Google Scholar 

  3. Pearson DC et al. Azathioprine for maintaining remission of Crohn's disease. Cochrane Database of Systematic Reviews 2000, Issue 2. Art. No.: CD000067.pub2. doi: 10.1002/14651858.CD000067.pub2

    Google Scholar 

  4. Lichtenstein GR et al. (2006) American Gastroenterological Association Institute technical review on corticosteroids, immunomodulators, and infliximab in inflammatory bowel disease. Gastroenterology 130: 940–987

    Article  CAS  PubMed  Google Scholar 

  5. de Jong DJ et al. (2003) Safety of thiopurines in the treatment of inflammatory bowel disease. Scand J Gastroenterol Suppl 239: 69–72

    Article  CAS  Google Scholar 

  6. de Boer NK et al. (2006) 6-Thioguanine treatment in inflammatory bowel disease: a critical appraisal by a European 6-TG working party. Digestion 73: 25–31

    Article  CAS  PubMed  Google Scholar 

  7. Schwab M and Klotz U (2001) Pharmacokinetic considerations in the treatment of inflammatory bowel disease. Clin Pharmacokinet 40: 723–751

    Article  CAS  PubMed  Google Scholar 

  8. Cuffari C et al. (2000) Enhanced bioavailability of azathioprine compared to 6-mercaptopurine therapy in inflammatory bowel disease: correlation with treatment efficacy. Aliment Pharmacol Ther 14: 1009–1014

    Article  CAS  PubMed  Google Scholar 

  9. Lennard L (1992) The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol 43: 329–339

    Article  CAS  PubMed  Google Scholar 

  10. Neurath MF et al. (2005) 6-thioguanosine diphosphate and triphosphate levels in red blood cells and response to azathioprine therapy in Crohn's disease. Clin Gastroenterol Hepatol 3: 1007–1014

    Article  CAS  PubMed  Google Scholar 

  11. Tabloid® (oral thiogaunine) prescribing information (GlaxoSmithKline 2004) [http://us.gsk.com/products/assets/us_tabloid.pdf] (accessed 25 September 2007)

  12. Lennard L et al. (1993) Is 6-thioguanine more appropriate than 6-mercaptopurine for children with acute lymphoblastic leukaemia? Br J Cancer 68: 186–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deibert P et al. (2003) High variation of tioguanine absorption in patients with chronic active Crohn's disease. Aliment Pharmacol Ther 18: 183–189

    Article  CAS  PubMed  Google Scholar 

  14. de Boer NK et al. (2007) Extended thiopurine metabolite assessment during 6-thioguanine therapy for immunomodulation in Crohn's disease. J Clin Pharmacol 47: 187–191

    Article  CAS  PubMed  Google Scholar 

  15. Pettersson B et al. (2002) Differences between children and adults in thiopurine methyltransferase activity and metabolite formation during thiopurine therapy: possible role of concomitant methotrexate. Ther Drug Monit 24: 351–358

    Article  CAS  PubMed  Google Scholar 

  16. Weinshilboum RM and Sladek SL (1980) Mercaptopurine pharmacogenetics: monogenic inheritance of erythrocyte thiopurine methyltransferase activity. Am J Hum Genet 32: 651–662

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tai HL et al. (1996) Thiopurine S-methyltransferase deficiency: two nucleotide transitions define the most prevalent mutant allele associated with loss of catalytic activity in Caucasians. Am J Hum Genet 58: 694–702

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Schwab M et al. (2001) Shortcoming in the diagnosis of TPMT deficiency in a patient with Crohn's disease using phenotyping only. Gastroenterology 121: 498–499

    Article  CAS  PubMed  Google Scholar 

  19. Marathias VM et al. (1999) 6-Thioguanine alters the structure and stability of duplex DNA and inhibits quadruplex DNA formation. Nucleic Acids Res 27: 2860–2867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fairchild CR et al. (1986) Concurrent unilateral chromatid damage and DNA strand breakage in response to 6-thioguanine treatment. Biochem Pharmacol 35: 3533–3541

    Article  CAS  PubMed  Google Scholar 

  21. Somerville L et al. (2003) Structure and dynamics of thioguanine-modified duplex DNA. J Biol Chem 278: 1005–1011

    Article  CAS  PubMed  Google Scholar 

  22. Swann PF et al. (1996) Role of postreplicative DNA mismatch repair in the cytotoxic action of thioguanine. Science 273: 1109–1011

    Article  CAS  PubMed  Google Scholar 

  23. Lennard L (2002) TPMT in the treatment of Crohn's disease with azathioprine. Gut 51: 143–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dervieux T et al. (2001) Differing contribution of thiopurine methyltransferase to mercaptopurine versus thioguanine effects in human leukemic cells. Cancer Res 61: 5810–5816

    CAS  PubMed  Google Scholar 

  25. Tidd DM et al. (1972) A delayed cytotoxic reaction for 6-mercaptopurine. Cancer Res 32: 317–322

    CAS  PubMed  Google Scholar 

  26. Cuffari C et al. (2004) Peripheral blood mononuclear cell DNA 6-thioguanine metabolite levels correlate with decreased interferon-gamma production in patients with Crohn's disease on AZA therapy. Dig Dis Sci 49: 133–137

    Article  CAS  PubMed  Google Scholar 

  27. Thomas CW et al. (2005) Selective inhibition of inflammatory gene expression in activated T lymphocytes: a mechanism of immune suppression by thiopurines. J Pharmacol Exp Ther 312: 537–545

    Article  CAS  PubMed  Google Scholar 

  28. Tiede I et al. (2003) CD28-dependent Rac1 activation is the molecular target of azathioprine in primary human CD4+ T lymphocytes. J Clin Invest 111: 1133–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Poppe D et al. (2006) Azathioprine suppresses ezrin-radixin-moesin-dependent T cell-APC conjugation through inhibition of Vav guanosine exchange activity on Rac proteins. J Immunol 176: 640–651

    Article  CAS  PubMed  Google Scholar 

  30. Quéméneur L et al. (2003) Differential control of cell cycle, proliferation, and survival of primary T lymphocytes by purine and pyrimidine nucleotides. J Immunol 170: 4986–4995

    Article  PubMed  Google Scholar 

  31. McGovern DP et al. (2002) Azathioprine intolerance in patients with IBD may be imidazole-related and is independent of TPMT activity. Gastroenterology 122: 838–839

    Article  CAS  PubMed  Google Scholar 

  32. Boulton-Jones JR et al. (2000) The use of 6-mercaptopurine in patients with inflammatory bowel disease after failure of azathioprine therapy. Aliment Pharmacol Ther 14: 1561–1565

    Article  CAS  PubMed  Google Scholar 

  33. Marinaki AM et al. (2004) Adverse drug reactions to azathioprine are associated with polymorphism in the gene encoding inosine triphosphate pyrophosphatase (ITPase). Pharmacogenetics 14: 181–187

    Article  CAS  PubMed  Google Scholar 

  34. Zelinkova Z et al. (2006) Inosine triphosphate pyrophosphatase and thiopurine s-methyltransferase genotypes relationship to azathioprine-induced myelosuppression. Clin Gastroenterol Hepatol 4: 44–49

    Article  CAS  PubMed  Google Scholar 

  35. Sumi et al. (2002) Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency. Hum Genet 111: 360–367

    Article  CAS  PubMed  Google Scholar 

  36. Gearry RB et al. (2004) Lack of association between the ITPA 94C>A polymorphism and adverse effects from azathioprine. Pharmacogenetics 14: 779–781

    Article  CAS  PubMed  Google Scholar 

  37. Allorge D et al. (2005) ITPA genotyping test does not improve detection of Crohn's disease patients at risk of azathioprine/6-mercaptopurine induced myelosuppression. Gut 54: 565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. de Boer NK et al. (2005) On tolerability and safety of a maintenance treatment with 6-thioguanine in azathioprine or 6-mercaptopurine intolerant IBD patients. World J Gastroenterol 11: 5540–5544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Herrlinger KR et al. (2003) Remission maintenance by tioguanine in chronic active Crohn's disease. Aliment Pharmacol Ther 17: 1459–1464

    Article  CAS  PubMed  Google Scholar 

  40. Present DH et al. (1989) 6-Mercaptopurine in the management of inflammatory bowel disease: short- and long-term toxicity. Ann Intern Med 111: 641–649

    Article  CAS  PubMed  Google Scholar 

  41. Connell WR et al. (1993) Bone marrow toxicity caused by azathioprine in inflammatory bowel disease: 27 years of experience. Gut 34: 1081–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dubinsky MC et al. (2000) Pharmacogenomics and metabolite measurement for 6-mercaptopurine therapy in inflammatory bowel disease. Gastroenterology 118: 705–713

    Article  CAS  PubMed  Google Scholar 

  43. Kaskas BA et al. (2003) Safe treatment of thiopurine S-methyltransferase deficient Crohn's disease patients with azathioprine. Gut 52: 140–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Colombel JF et al. (2000) Genotypic analysis of thiopurine S-methyltransferase in patients with Crohn's disease and severe myelosuppression during azathioprine therapy. Gastroenterology 118: 1025–1030

    Article  CAS  PubMed  Google Scholar 

  45. Dewit O et al. (2002) Interaction between azathioprine and aminosalicylates: an in vivo study in patients with Crohn's disease. Aliment Pharmacol Ther 16: 79–85

    Article  CAS  PubMed  Google Scholar 

  46. Xin H et al. (2005) Effects of aminosalicylates on thiopurine S-methyltransferase activity: an ex vivo study in patients with inflammatory bowel disease. Aliment Pharmacol Ther 21: 1105–1109

    Article  CAS  PubMed  Google Scholar 

  47. Hande S et al. (2006) 5-aminosalicylate therapy is associated with higher 6-thioguanine levels in adults and children with inflammatory bowel disease in remission on 6-mercaptopurine or azathioprine. Inflamm Bowel Dis 12: 251–257

    Article  PubMed  Google Scholar 

  48. Lowry PW et al. (2001) Leucopenia resulting from a drug interaction between azathioprine or 6-mercaptopurine and mesalamine, sulphasalazine, or balsalazide. Gut 49: 656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zimm S et al. (1983) Inhibition of first-pass metabolism in cancer chemotherapy: interaction of 6-mercaptopurine and allopurinol. Clin Pharmacol Ther 34: 810–817

    Article  CAS  PubMed  Google Scholar 

  50. Sparrow MP et al. (2005) Allopurinol safely and effectively optimizes tioguanine metabolites in inflammatory bowel disease patients not responding to azathioprine and mercaptopurine. Aliment Pharmacol Ther 22: 441–446

    Article  CAS  PubMed  Google Scholar 

  51. Sparrow MP et al. (2007) Effect of allopurinol on clinical outcomes in inflammatory bowel disease nonresponders to azathioprine or 6-mercaptopurine. Clin Gastroenterol Hepatol 5: 209–214

    Article  CAS  PubMed  Google Scholar 

  52. Herrlinger KR et al. (2004) Thioguanine-nucleotides do not predict efficacy of tioguanine in Crohn's disease. Aliment Pharmacol Ther 19: 1269–1276

    Article  CAS  PubMed  Google Scholar 

  53. Dubinsky MC et al. (2001) An open-label pilot study using thioguanine as a therapeutic alternative in Crohn's disease patients resistant to 6-mercaptopurine therapy. Inflamm Bowel Dis 7: 181–189

    Article  CAS  PubMed  Google Scholar 

  54. Dubinsky MC et al. (2003) 6-thioguanine can cause serious liver injury in inflammatory bowel disease patients. Gastroenterology 125: 298–303

    Article  CAS  PubMed  Google Scholar 

  55. de Boer NK et al. (2005) On the limitation of 6-tioguaninenucleotide monitoring during tioguanine treatment. Aliment Pharmacol Ther 22: 447–451

    Article  CAS  PubMed  Google Scholar 

  56. McBride KL et al. (2000) Severe 6-thioguanine-induced marrow aplasia in a child with acute lymphoblastic leukemia and inherited thiopurine methyltransferase deficiency. J Pediatr Hematol Oncol 22: 441–445

    Article  CAS  PubMed  Google Scholar 

  57. Fraser AG et al. (2002) The efficacy of azathioprine for the treatment of inflammatory bowel disease: a 30 year review. Gut 50: 485–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schwab M et al. (2002) Azathioprine therapy and adverse drug reactions in patients with inflammatory bowel disease: impact of thiopurine S-methyltransferase polymorphism. Pharmacogenetics 12: 429–436

    Article  CAS  PubMed  Google Scholar 

  59. Lee WM (2003) Drug-induced hepatotoxicity. N Engl J Med 349: 474–485

    Article  CAS  PubMed  Google Scholar 

  60. Dubinsky MC et al. (2002) 6-MP metabolite profiles provide a biochemical explanation for 6-MP resistance in patients with inflammatory bowel disease. Gastroenterology 122: 904–915

    Article  CAS  PubMed  Google Scholar 

  61. Gilissen LP et al. (2004) Some cases demonstrating the clinical usefulness of therapeutic drug monitoring in thiopurine-treated inflammatory bowel disease patients. Eur J Gastroenterol Hepatol 16: 705–710

    Article  CAS  PubMed  Google Scholar 

  62. Goldenberg BA et al. (2004) The utility of 6-thioguanine metabolite levels in managing patients with inflammatory bowel disease. Am J Gastroenterol 99: 1744–1748

    Article  CAS  PubMed  Google Scholar 

  63. Wright S et al. (2004) Clinical significance of azathioprine active metabolite concentrations in inflammatory bowel disease. Gut 53: 1123–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Reshamwala PA et al. (2006) Nodular regenerative hyperplasia: not all nodules are created equal. Hepatology 44: 7–14

    Article  PubMed  Google Scholar 

  65. Haboubi NY et al. (1988) Role of endothelial cell injury in the spectrum of azathioprine-induced liver disease after renal transplant: light microscopy and ultrastructural observations. Am J Gastroenterol 83: 256–261

    CAS  PubMed  Google Scholar 

  66. Vernier-Massouille G et al. (2007) Nodular regenerative hyperplasia in patients with inflammatory bowel disease treated with azathioprine. Gut 56: 1404–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Seiderer J et al. (2006) Nodular regenerative hyperplasia: a reversible entity associated with azathioprine therapy. Eur J Gastroenterol Hepatol 18: 553–555

    Article  PubMed  Google Scholar 

  68. Seiderer J et al. (2005) A multicenter assessment of liver toxicity by MRI and biopsy in IBD patients on 6-thioguanine. J Hepatol 43: 303–309

    Article  CAS  PubMed  Google Scholar 

  69. Geller SA et al. (2004) Early hepatic nodular hyperplasia and submicroscopic fibrosis associated with 6-thioguanine therapy in inflammatory bowel disease. Am J Surg Pathol 28: 1204–1211

    Article  PubMed  Google Scholar 

  70. de Boer NK et al. (2006) Hepatotoxicity of long-term and low-dose 6-thioguanine in IBD patients. Gastroenterology 130: A202–A203

    Google Scholar 

  71. de Boer NK et al. (2005) Nodular regenerative hyperplasia and thiopurines: the case for level-dependent toxicity. Liver Transpl 11: 1300–1301

    Article  PubMed  Google Scholar 

  72. Breen DP et al. (2005) Pharmacogenetic association with adverse drug reactions to azathioprine immunosuppressive therapy following liver transplantation. Liver Transpl 11: 826–833

    Article  PubMed  Google Scholar 

  73. Kandiel A et al. (2005) Increased risk of lymphoma among inflammatory bowel disease patients treated with azathioprine and 6-mercaptopurine. Gut 54: 1121–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. O'Donovan P et al. (2005) Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science 309: 1871–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lewis JD et al. (2000) Azathioprine for maintenance of remission in Crohn's disease: benefits outweigh the risk of lymphoma. Gastroenterology 118: 1018–1024

    Article  CAS  PubMed  Google Scholar 

  76. Alstead EM et al. (1990) Safety of azathioprine in pregnancy in inflammatory bowel disease. Gastroenterology 99: 443–446

    Article  CAS  PubMed  Google Scholar 

  77. Francella A et al. (2003) The safety of 6-mercaptopurine for childbearing patients with inflammatory bowel disease: a retrospective cohort study. Gastroenterology 124: 9–17

    Article  CAS  PubMed  Google Scholar 

  78. Nørgård B et al. (2007) Disease activity in pregnant women with Crohn's disease and birth outcomes: a regional danish cohort study. Am J Gastroenterol 102: 1947–1954

    Article  PubMed  Google Scholar 

  79. Saarikoski S and Seppälä M (1973) Immunosuppression during pregnancy: transmission of azathioprine and its metabolites from the mother to the fetus. Am J Obstet Gynecol 115: 1100–1106

    Article  CAS  PubMed  Google Scholar 

  80. De Boer NK et al. (2006) Azathioprine use during pregnancy: unexpected intrauterine exposure to metabolites. Am J Gastroenterol 101: 1390–1392

    Article  PubMed  Google Scholar 

  81. Gardiner SJ et al. (2006) Exposure to thiopurine drugs through breast milk is low based on metabolite concentrations in mother-infant pairs. Br J Clin Pharmacol 62: 453–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sau A et al. (2007) Azathioprine and breastfeeding: is it safe? BJOG 114: 498–501

    Article  CAS  PubMed  Google Scholar 

  83. de Boer NK et al. (2005) 6-Thioguanine for Crohn's disease during pregnancy: thiopurine metabolite measurements in both mother and child. Scand J Gastroenterol 40: 1374–1377

    Article  CAS  PubMed  Google Scholar 

  84. Travis SP et al. (2006) European evidence based consensus on the diagnosis and management of Crohn's disease: current management. Gut 55 (Suppl 1): i16–i35

    Article  PubMed  PubMed Central  Google Scholar 

  85. Winter J et al. (2004) Cost-effectiveness of thiopurine methyltransferase genotype screening in patients about to commence azathioprine therapy for treatment of inflammatory bowel disease. Aliment Pharmacol Ther 20: 593–599

    Article  CAS  PubMed  Google Scholar 

  86. Dubinsky MC et al. (2005) A cost-effectiveness analysis of alternative disease management strategies in patients with Crohn's disease treated with azathioprine or 6-mercaptopurine. Am J Gastroenterol 100: 2239–2247

    Article  CAS  PubMed  Google Scholar 

  87. Sandborn WJ (2001) Rational dosing of azathioprine or 6-mercaptopurine. Gut 48: 591–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Osterman MT et al. (2006) Association of 6-thioguanine nucleotide levels and inflammatory bowel disease activity: a meta-analysis. Gastroenterology 130: 1047–1053

    Article  CAS  PubMed  Google Scholar 

  89. Reinshagen M et al. (2007) 6-Thioguanine nucleotide-adapted azathioprine therapy does not lead to higher remission rates than standard therapy in chronic active Crohn's disease: results from a randomized, controlled, open trial. Clin Chem 53: 1306–1314

    Article  CAS  PubMed  Google Scholar 

  90. Belaiche J et al. (2001) Therapeutic drug monitoring of azathioprine and 6-mercaptopurine metabolites in Crohn disease. Scand J Gastroenterol 36: 71–76

    Article  CAS  PubMed  Google Scholar 

  91. Goldenberg BA et al. (2004) The utility of 6-thioguanine metabolite levels in managing patients with inflammatory bowel disease. Am J Gastroenterol 99: 1744–1748

    Article  CAS  PubMed  Google Scholar 

  92. Wusk B et al. (2004) Therapeutic drug monitoring of thiopurine drugs in patients with inflammatory bowel disease or autoimmune hepatitis. Eur J Gastroenterol Hepatol 16: 1407–1413

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanne KH de Boer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Boer, N., van Bodegraven, A., Jharap, B. et al. Drug Insight: pharmacology and toxicity of thiopurine therapy in patients with IBD. Nat Rev Gastroenterol Hepatol 4, 686–694 (2007). https://doi.org/10.1038/ncpgasthep1000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpgasthep1000

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing