Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The new peritoneal dialysis solutions: friends only, or foes in part?

Abstract

Over the past decade new solutions for peritoneal dialysis have been developed in an effort to reduce the bioincompatibility of conventional glucose-containing, lactate-buffered solutions, and thereby to improve the clinical outcomes of peritoneal dialysis. The new solutions contain either other non-glucose osmotic agents, such as glucose polymers or amino acids, or have a neutral pH; the buffer content is altered in some of the new solutions. In vitro and in vivo studies have shown the biocompatibility of these new solutions to be superior to that of standard solutions. In this paper, available clinical data on the use of these new solutions are reviewed. In general, the data indicate improved biocompatibility of the new solutions; a number of studies, however, detected no superiority when levels of accepted markers of biocompatibility, such as vascular endothelial growth factor or hyaluronic acid, were measured. This finding could be explained by the assumption that the new peritoneal dialysis solutions not only induce less damage to the peritoneal membrane but also better maintain repair mechanisms, which apparently are associated with enhanced release of such markers.

Key Points

  • Conventional peritoneal dialysis solutions are safe, but have bioincompatible constituents, such as glucose at high concentrations, glucose degradation products, low pH, and lactate buffer, which probably contribute to ultrafiltration failure

  • Compelling evidence from in vitro and animal studies indicates that less frequent dialysis failure is associated with solutions that have a more physiologic pH, and that contain nonlactate buffers, fewer glucose degradation products, and osmotic constituents other than glucose

  • Peritoneal dialysis solutions containing the glucose polymer icodextrin have positive effects on ultrafiltration, extracellular volume status, and blood pressure of human patients

  • Amino-acid-based solutions, developed to compensate for dialysis-induced amino acid losses, are safe and can improve protein malnutrition in humans

  • Glucose-containing solutions with a neutral pH correct metabolic acidosis in humans more efficiently than standard glucose-based solutions

  • There are few data on peritoneal dialysis regimens that use more than one type of 'new' solution

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Abboud O (2006) Incidence, prevalence, and treatment of end-stage renal disease in the Middle East. Ethn Dis 16 (Suppl 2): S2–S4

    PubMed  Google Scholar 

  2. Blake PG (2002) Peritoneal dialysis in Asia: an external perspective. Perit Dial Int 22: 258–264

    PubMed  Google Scholar 

  3. Selgas R et al. (2001) Comparisons of hemodialysis and CAPD in patients over 65 years of age: a meta-analysis. Int Urol Nephrol 33: 259–264

    Article  CAS  PubMed  Google Scholar 

  4. Termorshuizen F et al. (2003) Hemodialysis and peritoneal dialysis: comparison of adjusted mortality rates according to the duration of dialysis: analysis of The Netherlands Cooperative Study on the Adequacy of Dialysis 2. J Am Soc Nephrol 14: 2851–2860

    Article  PubMed  Google Scholar 

  5. Smit W et al. (2004) Analysis of the prevalence and causes of ultrafiltration failure during long-term peritoneal dialysis: a cross-sectional study. Perit Dial Int 24: 562–570

    PubMed  Google Scholar 

  6. Bilgic A et al. (2006) Clinical outcome after transfer from peritoneal dialysis to hemodialysis. Adv Perit Dial 22: 94–98

    PubMed  Google Scholar 

  7. Williams JD et al. (2002) Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 13: 470–479

    PubMed  Google Scholar 

  8. Catalan MP et al. (2001) Acceleration of neutrophil apoptosis by glucose-containing peritoneal dialysis solutions: role of caspases. J Am Soc Nephrol 12: 2442–2449

    CAS  PubMed  Google Scholar 

  9. Ha H et al. (2000) Effects of conventional and new peritoneal dialysis solutions on human peritoneal mesothelial cell viability and proliferation. Perit Dial Int 20 (Suppl 5): S10–S18

    PubMed  Google Scholar 

  10. Brulez HF et al. (1994) In vitro compatibility of a 1.1% amino acid containing peritoneal dialysis fluid with phagocyte function. Adv Perit Dial 10: 241–244

    CAS  PubMed  Google Scholar 

  11. Jorres A et al. (1994) In-vitro biocompatibility of alternative CAPD fluids; comparison of bicarbonate-buffered and glucose-polymer-based solutions. Nephrol Dial Transplant 9: 785–790

    CAS  PubMed  Google Scholar 

  12. Jorres A et al. (1997) In vitro biocompatibility evaluation of a novel bicarbonate-buffered amino-acid solution for peritoneal dialysis. Nephrol Dial Transplant 12: 543–549

    Article  CAS  PubMed  Google Scholar 

  13. Brulez HF et al. (1999) Mononuclear leucocyte function tests in the assessment of the biocompatibility of peritoneal dialysis fluids. J Clin Pathol 52: 901–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Plum J et al. (1997) Osmotic agents and buffers in peritoneal dialysis solution: monocyte cytokine release and in vitro cytotoxicity. Am J Kidney Dis 30: 413–422

    Article  CAS  PubMed  Google Scholar 

  15. Posthuma N et al. (2001) Amadori albumin and advanced glycation end-product formation in peritoneal dialysis using icodextrin. Perit Dial Int 21: 43–51

    CAS  PubMed  Google Scholar 

  16. Schalkwijk CG et al. (1999) Induction of 1,2-dicarbonyl compounds, intermediates in the formation of advanced glycation end-products, during heat-sterilization of glucose-based peritoneal dialysis fluids. Perit Dial Int 19: 325–333

    CAS  PubMed  Google Scholar 

  17. Schalkwijk CG et al. (2000) Reduced 1,2-dicarbonyl compounds in bicarbonate/lactate-buffered peritoneal dialysis (PD) fluids and PD fluids based on glucose polymers or amino acids. Perit Dial Int 20: 796–798

    CAS  PubMed  Google Scholar 

  18. ter Wee PM et al. (2003) The application of animal models to study the biocompatibility of bicarbonate-buffered peritoneal dialysis solutions. Kidney Int Suppl S75–S83

  19. Hekking LH et al. (2001) Better preservation of peritoneal morphologic features and defense in rats after long-term exposure to a bicarbonate/lactate-buffered solution. J Am Soc Nephrol 12: 2775–2786

    CAS  PubMed  Google Scholar 

  20. Zareie M et al. (2006) Improved biocompatibility of bicarbonate/lactate-buffered PDF is not related to pH. Nephrol Dial Transplant 21: 208–216

    Article  CAS  PubMed  Google Scholar 

  21. Zareie M et al. (2005) Better preservation of the peritoneum in rats exposed to amino acid-based peritoneal dialysis fluid. Perit Dial Int 25: 58–67

    CAS  PubMed  Google Scholar 

  22. Peers E and Gokal R (1998) Icodextrin provides long dwell peritoneal dialysis and maintenance of intraperitoneal volume. Artif Organs 22: 8–12

    Article  CAS  PubMed  Google Scholar 

  23. Mistry CD et al. (1994) A randomized multicenter clinical trial comparing isosmolar icodextrin with hyperosmolar glucose solutions in CAPD. MIDAS Study Group. Multicenter Investigation of Icodextrin in Ambulatory Peritoneal Dialysis. Kidney Int 46: 496–503

    Article  CAS  PubMed  Google Scholar 

  24. Posthuma N et al. (2000) Assessment of the effectiveness, safety, and biocompatibility of icodextrin in automated peritoneal dialysis. The Dextrin in APD in Amsterdam (DIANA) Group. Perit Dial Int 20 (Suppl 2): S106–S113

    PubMed  Google Scholar 

  25. Woodrow G et al. (1999) Comparison of icodextrin and glucose solutions for the daytime dwell in automated peritoneal dialysis. Nephrol Dial Transplant 14: 1530–1535

    Article  CAS  PubMed  Google Scholar 

  26. Michallat AC et al. (2005) Long daytime exchange in children on continuous cycling peritoneal dialysis: preservation of drained volume because of icodextrin use. Adv Perit Dial 21: 195–199

    CAS  PubMed  Google Scholar 

  27. Nakamoto H et al. (2005) Successful use of icodextrin in elderly patients on continuous ambulatory peritoneal dialysis. Adv Perit Dial 21: 168–174

    PubMed  Google Scholar 

  28. Finkelstein F et al. (2005) Superiority of icodextrin compared with 4.25% dextrose for peritoneal ultrafiltration. J Am Soc Nephrol 16: 546–554

    Article  CAS  PubMed  Google Scholar 

  29. Posthuma N et al. (1997) Icodextrin instead of glucose during the daytime dwell in CCPD increases ultrafiltration and 24-h dialysate creatinine clearance. Nephrol Dial Transplant 12: 550–553

    Article  CAS  PubMed  Google Scholar 

  30. Davies SJ et al. (2005) Longitudinal membrane function in functionally anuric patients treated with APD: data from EAPOS on the effects of glucose and icodextrin prescription. Kidney Int 67: 1609–1615

    Article  CAS  PubMed  Google Scholar 

  31. Dallas F et al. (2004) Enhanced ultrafiltration using 7.5% icodextrin/1.36% glucose combination dialysate: a pilot study. Perit Dial Int 24: 542–546

    PubMed  Google Scholar 

  32. Davies SJ et al. (2003) Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial. J Am Soc Nephrol 14: 2338–2344

    Article  CAS  PubMed  Google Scholar 

  33. Plum J et al. (2002) Efficacy and safety of a 7.5% icodextrin peritoneal dialysis solution in patients treated with automated peritoneal dialysis. Am J Kidney Dis 39: 862–871

    Article  CAS  PubMed  Google Scholar 

  34. Adachi Y et al. (2006) Icodextrin preserves residual renal function in patients treated with automated peritoneal dialysis. Perit Dial Int 26: 405–407

    CAS  PubMed  Google Scholar 

  35. Konings CJ et al. (2005) A decline in residual glomerular filtration during the use of icodextrin may be due to underhydration. Kidney Int 67: 1190–1191

    Article  PubMed  Google Scholar 

  36. Wolfson M et al. (2002) A randomized controlled trial to evaluate the efficacy and safety of icodextrin in peritoneal dialysis. Am J Kidney Dis 40: 1055–1065

    Article  CAS  PubMed  Google Scholar 

  37. Konings CJ et al. (2003) Effect of icodextrin on volume status, blood pressure and echocardiographic parameters: a randomized study. Kidney Int 63: 1556–1563

    Article  CAS  PubMed  Google Scholar 

  38. Woodrow G et al. (2000) Effects of icodextrin in automated peritoneal dialysis on blood pressure and bioelectrical impedance analysis. Nephrol Dial Transplant 15: 862–866

    Article  CAS  PubMed  Google Scholar 

  39. Kuriyama R et al. (2006) Icodextrin reduces mortality and the drop-out rate in Japanese peritoneal dialysis patients. Adv Perit Dial 22: 108–110

    CAS  PubMed  Google Scholar 

  40. Bredie SJ et al. (2001) Effects of peritoneal dialysis with an overnight icodextrin dwell on parameters of glucose and lipid metabolism. Perit Dial Int 21: 275–281

    CAS  PubMed  Google Scholar 

  41. Sisca S and Maggiore U (2002) Beneficial effect of icodextrin on the hypertriglyceridemia of CAPD patients. Perit Dial Int 22: 727–729

    CAS  PubMed  Google Scholar 

  42. Furuya R et al. (2006) Beneficial effects of icodextrin on plasma level of adipocytokines in peritoneal dialysis patients. Nephrol Dial Transplant 21: 494–498

    Article  CAS  PubMed  Google Scholar 

  43. Martikainen T et al. (2005) Benefit of glucose-free dialysis solutions on glucose and lipid metabolism in peritoneal dialysis patients. Blood Purif 23: 303–310

    Article  CAS  PubMed  Google Scholar 

  44. Gursu EM et al. (2006) The effect of icodextrin and glucose-containing solutions on insulin resistance in CAPD patients. Clin Nephrol 66: 263–268

    Article  CAS  PubMed  Google Scholar 

  45. Canbakan M and Sahin GM (2007) Icodextrine and insulin resistance in continuous ambulatory peritoneal dialysis patients. Ren Fail 29: 289–293

    Article  CAS  PubMed  Google Scholar 

  46. Czupryniak A et al. (2005) Peritoneal clearance of homocysteine with icodextrin or standard glucose solution exchange. Nephrology (Carlton) 10: 571–575

    Article  CAS  Google Scholar 

  47. Adachi Y et al. (2006) In patients treated with peritoneal dialysis, icodextrin improves erythropoietin-resistant anemia through blockade of asialo receptors on hepatocytes. Adv Perit Dial 22: 41–44

    CAS  PubMed  Google Scholar 

  48. Gokal R et al. (1995) Peritonitis occurrence in a multicenter study of icodextrin and glucose in CAPD. MIDAS Study Group. Multicenter Investigation of Icodextrin in Ambulatory Dialysis. Perit Dial Int 15: 226–230

    CAS  PubMed  Google Scholar 

  49. Ota K et al. (2003) Peritoneal ultrafiltration and serum icodextrin concentration during dialysis with 7.5% icodextrin solution in Japanese patients. Perit Dial Int 23: 356–361

    CAS  PubMed  Google Scholar 

  50. Konings CJ et al. (2005) Influence of icodextrin on plasma and dialysate levels of Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine. Perit Dial Int 25: 591–595

    CAS  PubMed  Google Scholar 

  51. Kooman JP et al. (2006) The increase in plasma levels of Nε-(carboxymethyl)lysine during icodextrin treatment of peritoneal dialysis patients is not associated with increased plasma levels of vascular cell adhesion molecule-1. Perit Dial Int 26: 410–411

    CAS  PubMed  Google Scholar 

  52. Martikainen TA et al. (2005) Glucose-free dialysis solutions: inductors of inflammation or preservers of peritoneal membrane? Perit Dial Int 25: 453–460

    CAS  PubMed  Google Scholar 

  53. Martikainen T et al. (2005) Do interleukin-6, hyaluronan, soluble intercellular adhesion molecule-1 and cancer antigen 125 in dialysate predict changes in peritoneal function? A 1-year follow-up study. Scand J Urol Nephrol 39: 410–416

    Article  CAS  PubMed  Google Scholar 

  54. Parikova A et al. (2003) Peritoneal effluent markers of inflammation in patients treated with icodextrin-based and glucose-based dialysis solutions. Adv Perit Dial 19: 186–190

    PubMed  Google Scholar 

  55. Moriishi M et al. (2005) Effect of icodextrin-based peritoneal dialysis solution on peritoneal membrane. Adv Perit Dial 21: 21–24

    CAS  PubMed  Google Scholar 

  56. Pecoits-Filho R et al. (2006) Systemic and intraperitoneal interleukin-6 system during the first year of peritoneal dialysis. Perit Dial Int 26: 53–63

    CAS  PubMed  Google Scholar 

  57. Moriishi M et al. (2006) Impact on peritoneal membrane of use of icodextrin-based dialysis solution in peritoneal dialysis patients. Adv Perit Dial 22: 24–28

    CAS  PubMed  Google Scholar 

  58. van Hoeck KJ et al. (2003) Nutritional effects of increasing dialysis dose by adding an icodextrin daytime dwell to Nocturnal Intermittent Peritoneal Dialysis (NIPD) in children. Nephrol Dial Transplant 18: 1383–1387

    Article  CAS  PubMed  Google Scholar 

  59. Wang T et al. (1999) Nutritional problems in peritoneal dialysis: an overview. Perit Dial Int 19 (Suppl 2): S297–S303

    PubMed  Google Scholar 

  60. Plum J et al. (1999) An amino acid-based peritoneal dialysis fluid buffered with bicarbonate versus glucose/bicarbonate and glucose/lactate solutions: an intraindividual randomized study. Perit Dial Int 19: 418–428

    CAS  PubMed  Google Scholar 

  61. Park MS et al. (1993) Peritoneal transport during dialysis with amino acid-based solutions. Perit Dial Int 13: 280–288

    CAS  PubMed  Google Scholar 

  62. Li FK et al. (2003) A 3-year, prospective, randomized, controlled study on amino acid dialysate in patients on CAPD. Am J Kidney Dis 42: 173–183

    Article  CAS  PubMed  Google Scholar 

  63. Taylor GS et al. (2002) Long-term use of 1.1% amino acid dialysis solution in hypoalbuminemic continuous ambulatory peritoneal dialysis patients. Clin Nephrol 58: 445–450

    Article  CAS  PubMed  Google Scholar 

  64. Faller B et al. (1995) Clinical evaluation of an optimized 1.1% amino-acid solution for peritoneal dialysis. Nephrol Dial Transplant 10: 1432–1437

    CAS  PubMed  Google Scholar 

  65. Jones M et al. (1998) Treatment of malnutrition with 1.1% amino acid peritoneal dialysis solution: results of a multicenter outpatient study. Am J Kidney Dis 32: 761–769

    Article  CAS  PubMed  Google Scholar 

  66. Misra M et al. (1996) Nutritional effects of amino acid dialysate (Nutrineal) in CAPD patients. Adv Perit Dial 12: 311–314

    CAS  PubMed  Google Scholar 

  67. Park MS et al. (2006) New insight of amino acid-based dialysis solutions. Kidney Int Suppl S110–S114

    Article  CAS  Google Scholar 

  68. Tjiong HL et al. (2005) Dialysate as food: combined amino acid and glucose dialysate improves protein anabolism in renal failure patients on automated peritoneal dialysis. J Am Soc Nephrol 16: 1486–1493

    Article  CAS  PubMed  Google Scholar 

  69. Tjiong HL et al. (2007) Peritoneal dialysis with solutions containing amino acids plus glucose promotes protein synthesis during oral feeding. Clin J Am Soc Nephrol 2: 74–80

    Article  CAS  PubMed  Google Scholar 

  70. Garibotto G et al. (2001) Acute effects of peritoneal dialysis with dialysates containing dextrose or dextrose and amino acids on muscle protein turnover in patients with chronic renal failure. J Am Soc Nephrol 12: 557–567

    CAS  PubMed  Google Scholar 

  71. Selby NM et al. (2005) Hypertonic glucose-based peritoneal dialysate is associated with higher blood pressure and adverse haemodynamics as compared with icodextrin. Nephrol Dial Transplant 20: 1848–1853

    Article  CAS  PubMed  Google Scholar 

  72. Selby NM et al. (2007) The haemodynamic and metabolic effects of hypertonic-glucose and amino-acid-based peritoneal dialysis fluids. Nephrol Dial Transplant 22: 870–879

    Article  CAS  PubMed  Google Scholar 

  73. Brulez HF et al. (1999) The impact of an amino acid-based peritoneal dialysis fluid on plasma total homocysteine levels, lipid profile and body fat mass. Nephrol Dial Transplant 14: 154–159

    Article  CAS  PubMed  Google Scholar 

  74. Yang SY et al. (2005) Factors associated with increased plasma homocysteine in patients using an amino acid peritoneal dialysis fluid. Nephrol Dial Transplant 20: 161–166

    Article  PubMed  Google Scholar 

  75. Clarke R and Lewington S (2002) Homocysteine and coronary heart disease. Semin Vasc Med 2: 391–399

    Article  PubMed  Google Scholar 

  76. Lage C et al. (2000) First in vitro and in vivo experiences with Stay-Safe Balance, a pH-neutral solution in a dual-chambered bag. Perit Dial Int 20 (Suppl 5): S28–S32

    PubMed  Google Scholar 

  77. Lee HY et al. (2005) Superior patient survival for continuous ambulatory peritoneal dialysis patients treated with a peritoneal dialysis fluid with neutral pH and low glucose degradation product concentration (Balance). Perit Dial Int 25: 248–255

    PubMed  Google Scholar 

  78. Szeto CC et al. (2007) Clinical biocompatibility of a neutral peritoneal dialysis solution with minimal glucose-degradation products—a 1-year randomized control trial. Nephrol Dial Transplant 22: 552–559

    Article  CAS  PubMed  Google Scholar 

  79. Williams JD et al. (2004) The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int 66: 408–418

    Article  PubMed  Google Scholar 

  80. Rippe B et al. (2001) Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int 59: 348–357

    Article  CAS  PubMed  Google Scholar 

  81. Moriishi M et al. (2002) Influence of pH-neutral peritoneal dialysis solution. Adv Perit Dial 18: 68–71

    CAS  PubMed  Google Scholar 

  82. Carrasco AM et al. (2001) Acidosis correction with a new 25 mmol/l bicarbonate/15 mmol/l lactate peritoneal dialysis solution. Perit Dial Int 21: 546–553

    CAS  PubMed  Google Scholar 

  83. Coles GA et al. (1998) A controlled trial of two bicarbonate-containing dialysis fluids for CAPD—final report. Nephrol Dial Transplant 13: 3165–3171

    Article  CAS  PubMed  Google Scholar 

  84. Otte K et al. (2003) Clinical experience with a new bicarbonate (25 mmol/L)/lactate (10 mmol/L) peritoneal dialysis solution. Perit Dial Int 23: 138–145

    CAS  PubMed  Google Scholar 

  85. Simonsen O et al. (2006) Improvement of peritoneal ultrafiltration with peritoneal dialysis solution buffered with bicarbonate/lactate mixture. Perit Dial Int 26: 353–359

    CAS  PubMed  Google Scholar 

  86. Tranaeus A (2000) A long-term study of a bicarbonate/lactate-based peritoneal dialysis solution—clinical benefits. The Bicarbonate/Lactate Study Group. Perit Dial Int 20: 516–523

    CAS  PubMed  Google Scholar 

  87. Cancarini GC et al. (1998) Clinical evaluation of a peritoneal dialysis solution with 33 mmol/L bicarbonate. Perit Dial Int 18: 576–582

    CAS  PubMed  Google Scholar 

  88. Feriani M et al. (1998) Randomized long-term evaluation of bicarbonate-buffered CAPD solution. Kidney Int 54: 1731–1738

    Article  CAS  PubMed  Google Scholar 

  89. Montenegro J et al. (2006) Long-term clinical experience with pure bicarbonate peritoneal dialysis solutions. Perit Dial Int 26: 89–94

    CAS  PubMed  Google Scholar 

  90. Feriani M et al. (2004) Individualized bicarbonate concentrations in the peritoneal dialysis fluid to optimize acid-base status in CAPD patients. Nephrol Dial Transplant 19: 195–202

    Article  CAS  PubMed  Google Scholar 

  91. Mactier RA et al. (1998) Bicarbonate and bicarbonate/lactate peritoneal dialysis solutions for the treatment of infusion pain. Kidney Int 53: 1061–1067

    Article  CAS  PubMed  Google Scholar 

  92. Fusshoeller A et al. (2004) Biocompatibility pattern of a bicarbonate/lactate-buffered peritoneal dialysis fluid in APD: a prospective, randomized study. Nephrol Dial Transplant 19: 2101–2106

    Article  CAS  PubMed  Google Scholar 

  93. Garcia H et al. (2003) Short- and medium-term increase of CA125 in peritoneal effluent using a neutral-pH solution. Perit Dial Int 23: 375–380

    CAS  PubMed  Google Scholar 

  94. Jones S et al. (2001) Bicarbonate/lactate-based peritoneal dialysis solution increases cancer antigen 125 and decreases hyaluronic acid levels. Kidney Int 59: 1529–1538

    Article  CAS  PubMed  Google Scholar 

  95. Park MS et al. (2000) Effects of bicarbonate/lactate solution on peritoneal advanced glycosylation end-product accumulation. Perit Dial Int 20 (Suppl 5): S33–S38

    PubMed  Google Scholar 

  96. Cooker LA et al. (2001) Interleukin-6 levels decrease in effluent from patients dialyzed with bicarbonate/lactate-based peritoneal dialysis solutions. Perit Dial Int 21 (Suppl 3): S102–S107

    PubMed  Google Scholar 

  97. Lee HY et al. (2006) Changing prescribing practice in CAPD patients in Korea: increased utilization of low GDP solutions improves patient outcome. Nephrol Dial Transplant 21: 2893–2899

    Article  CAS  PubMed  Google Scholar 

  98. [No authors listed] (1996) Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol 7: 198–207

  99. Schaubel DE et al. (2001) Effect of renal center characteristics on mortality and technique failure on peritoneal dialysis. Kidney Int 60: 1517–1524

    Article  CAS  PubMed  Google Scholar 

  100. le Poole CY et al. (2004) Clinical effects of a peritoneal dialysis regimen low in glucose in new peritoneal dialysis patients: a randomized crossover study. Adv Perit Dial 20: 170–176

    PubMed  Google Scholar 

  101. le Poole CY et al. (2005) Initiating CAPD with a regimen low in glucose and glucose degradation products, with icodextrin and amino acids (NEPP) is safe and efficacious. Perit Dial Int 25 (Suppl 3): S64–S68

    CAS  PubMed  Google Scholar 

  102. Coester AM et al. (2006) Effect of biocompatible peritoneal dialysis on transport status: the Nutrineal, Extraneal, Physioneal (NEP) study. J Am Soc Nephrol 17: 279A

    Article  Google Scholar 

  103. Marshall J et al. (2003) Glycemic control in diabetic CAPD patients assessed by continuous glucose monitoring system (CGMS). Kidney Int 64: 1480–1486

    Article  PubMed  Google Scholar 

  104. Davies SJ et al. (2006) Improved fluid status and blood pressure control with low-sodium PD fluids. J Am Soc Nephrol 17: 101A

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter M ter Wee.

Ethics declarations

Competing interests

The authors have received financial support for animal and human studies of peritoneal dialysis from Baxter Healthcare and the Dutch Kidney Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ter Wee, P., van Ittersum, F. The new peritoneal dialysis solutions: friends only, or foes in part?. Nat Rev Nephrol 3, 604–612 (2007). https://doi.org/10.1038/ncpneph0620

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0620

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing