Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Animal toxins and the kidney

Abstract

Envenomation or poisoning by toxins from animals poses an important health hazard in the tropics. Animal toxins are complex mixtures of proteins, peptides, enzymes and chemicals. These toxins exert their effects through modulation of ion channels and receptors, and via direct enzyme action. Depolarization or hyperpolarization of ion channels—caused by most marine toxins, and some snake and insect venoms—results in neuromuscular symptoms that can be associated with hemodynamic changes. Toxin enzymes, especially proteases and phospholipase A2, initiate inflammatory processes that involve the generation of proinflammatory cytokines and vasoactive mediators, resulting in systemic and renal hemodynamic alterations. Toxin enzymes also have direct effects on erythrocytes, myocytes, blood coagulation factors, vascular endothelium and epithelial cells. As a result, disseminated intravascular coagulation, bleeding diathesis, intravascular hemolysis and rhabdomyolysis are common after exposure to animal toxins. The renal manifestations of animal toxin envenomation, which are usually acute, result mainly from these enzymatic effects. All renal structures can be affected by animal toxins, and tubular necrosis is common. Acute kidney injury is attributed to decreased renal blood flow (associated with intravascular hemolysis or rhabdomyolysis), disseminated intravascular coagulation or direct tubular toxicity. Immunologic mechanisms have a minor role in the pathophysiology of nephropathy caused by animal toxins.

Key Points

  • Animal toxins are mixtures of enzymes, proteins, peptides and chemicals

  • Some toxin proteins have effects on ion channels that cause neuromuscular symptoms through modulation of cytosolic calcium levels and release of neurotransmitters

  • Toxin enzymes, such as phospholipase A2 and proteases, cause membrane lysis, pore formation, destruction of the cytoskeleton, disturbance of blood coagulation and release of proinflammatory cytokines and vasoactive mediators

  • The hemodynamic changes induced by proinflammatory cytokines and vasoactive mediators are characterized by decreased systemic vascular resistance, increased renal vascular resistance and decreased renal blood flow

  • The renal pathological changes that follow animal toxin exposure include tubular necrosis, cortical necrosis, vasculitis, glomerulonephritis, interstitial nephritis and infarction

  • Acute kidney injury, commonly caused by tubular necrosis, results from the combined effects of decreased renal blood flow, intravascular hemolysis, rhabdomyolysis, disseminated intravascular coagulation and direct nephrotoxicity

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of kidney damage caused by animal toxins.

Similar content being viewed by others

References

  1. WHO Weekly Epidemiological Record (online 2 February 2002) Poisonous animal bites and stings. [http://whqlibdoc.who.int/wer/WHO_WER_1995/WER1995_70_313-316%20 (N%C2%B044).pdf] (accessed 30 July 2008)

  2. Catterall WA et al. (2007) Voltage-gated ion channels and gating modifier toxins. Toxicon 49: 124–141

    Article  CAS  PubMed  Google Scholar 

  3. Harvey AL et al. (1994) Potassium channel toxins and transmitter release. Ann NY Acad Sci 710: 1–10

    Article  CAS  PubMed  Google Scholar 

  4. Brubacher JR et al. (1999) Efficacy of digoxin specific Fab fragments (Digibind) in the treatment of toad venom poisoning. Toxicon 37: 931–942

    Article  CAS  PubMed  Google Scholar 

  5. Gowda RM et al. (2003) Toad venom poisoning: resemblance to digoxin toxicity and therapeutic implications. Heart 89: e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Habermann E (1989) Palytoxin acts through Na+,K+-ATPase. Toxicon 27: 1171–1187

    Article  CAS  PubMed  Google Scholar 

  7. Honma T et al. (2005) Novel peptide toxins from acrorhagi, aggressive organs of the sea anemone Actinia equina. Toxicon 46: 768–774

    Article  CAS  PubMed  Google Scholar 

  8. Mebs D and Hucho F (1990) Toxins acting on ion channels and synapses. In Handbook of Toxinology, 493–600 (Eds Shier T and Mebs D) New York: Marcel Dekker

    Google Scholar 

  9. Cajal Y and Jain MK (1997) Synergism between mellitin and phospholipase A2 from bee venom: apparent activation by intervesicle exchange of phospholipids. Biochemistry 36: 3882–3893

    Article  CAS  PubMed  Google Scholar 

  10. Elgar D et al. (2006) Ion selectivity of scorpion toxin-induced pores in cardiac myocytes. Peptides 27: 55–61

    Article  CAS  PubMed  Google Scholar 

  11. Bon C et al. (1994) Different evolution of phospholipase A2 neurotoxins (beta-neurotoxins) from Elapidae and Viperidae snakes. Ann NY Acad Sci 710: 142–148

    Article  CAS  PubMed  Google Scholar 

  12. Kamiguti AS et al. (1996) Insights into the mechanism of hemorrhage caused by snake venom metalloproteinases. Toxicon 34: 627–642

    Article  CAS  PubMed  Google Scholar 

  13. Fernandes CM et al. (2006) Inflammatory effects of BaP1 a metalloproteinase isolated from Bothrops asper snake venom: leukocyte recruitment and release of cytokines. Toxicon 47: 549–559

    Article  CAS  PubMed  Google Scholar 

  14. Kubo A et al. (2002) In vitro effects of Habu snake venom on cultured mesangial cells. Nephron 92: 665–672

    Article  CAS  PubMed  Google Scholar 

  15. Matsumoto K et al. (2002) Tenascin-C expression and splice variant in Habu snake venom-induced glomerulonephritis. Exp Mol Pathol 72: 186–195

    Article  CAS  PubMed  Google Scholar 

  16. Boer-Lima PA et al. (2002) Bothrops moojeni snake venom-induced renal glomeruli changes in rat. Am J Trop Med Hyg 67: 217–222

    Article  PubMed  Google Scholar 

  17. Chisari A et al. (1998) A phospholipase A2-related snake venom (from Crotalus durissus terrificus) stimulates neuroeudocrine and immune functions determination of different sites of action. Endocrinology 139: 617–625

    Article  CAS  PubMed  Google Scholar 

  18. Moura-da-Silva AM et al. (1996) Processing of pro-tumor necrosis factor-alpha by venom metalloproteinases: a hypothesis explaining local tissue damage following snake bite. Eur J Immunol 26: 2000–2005

    Article  CAS  PubMed  Google Scholar 

  19. Avila-Agüero ML et al. (2001) Systemic cytokine response in children bitten by snakes in Costa Rica. Pediatr Emerg Care 17: 425–429

    Article  PubMed  Google Scholar 

  20. Petricevich VL et al. (2000) Increments in serum cytokine and nitric oxide levels in mice injected with Bothrops asper and Bothrops jararaca snake venoms. Toxicon 38: 1253–1266

    Article  CAS  PubMed  Google Scholar 

  21. Thamaree S et al. (2000) Mediators and renal hemodynamics in Russell's viper envenomation. J Nat Toxins 9: 43–48

    CAS  PubMed  Google Scholar 

  22. Tungthanathanich P et al. (1986) Effect of Russell's viper (Vipera russelli siamensis) venom on renal hemodynamics in dogs. Toxicon 24: 365–371

    Article  CAS  PubMed  Google Scholar 

  23. Monteiro HS et al. (2001) Effects of Crotalus durissus terrificus venom and crotoxin on the isolated rat kidney. Braz J Med Biol Res 34: 1347–1352

    Article  CAS  PubMed  Google Scholar 

  24. de Sousa Alves R et al. (2005) Renal effects and vascular reactivity induced by Tityus serrulatus venom. Toxicon 46: 271–276

    Article  PubMed  CAS  Google Scholar 

  25. Suwansrinon K et al. (2007) Effects of Russell's viper venom fractions on systemic and renal hemodynamics. Toxicon 49: 82–88

    Article  CAS  PubMed  Google Scholar 

  26. Daly JW et al. (1987) Further classification of skin alkaloids from neotropical poison frogs (Dendrobatidae), with a general survey of toxic/noxious substances in the amphibia. Toxicon 25: 1023–1095

    Article  CAS  PubMed  Google Scholar 

  27. Erspamer V et al. (1979) Amino acid composition and sequence of crinia-angiotensin, an angiotensin II-like endecapeptide from the skin of the Australian frog Crinia georgiana. Experientia 35: 1132–1133

    Article  CAS  PubMed  Google Scholar 

  28. Sitprija V (2006) Snakebite nephropathy. Nephrology (Carlton) 11: 442–448

    Article  CAS  Google Scholar 

  29. Chugh KS (1989) Snake-bite-induced acute renal failure in India. Kidney Int 35: 891–907

    Article  CAS  PubMed  Google Scholar 

  30. Bourgain C et al. (1998) Massive poisoning by African bee stings [French]. Presse Med 27: 1099–1101

    CAS  PubMed  Google Scholar 

  31. Zhang R et al. (2001) Acute tubulointerstitial nephritis after wasp stings. Am J Kidney Dis 38: E33

    Article  CAS  PubMed  Google Scholar 

  32. Barsoum R and Sitprija V (2007) Tropical nephrology. In Diseases of the Kidney and Urinary Tract, edn 8, 2013–2055 (Ed. Schrier RW) Philadelphia: Lippincott Williams & Wilkins

    Google Scholar 

  33. Sitprija V (1980) Renal diseases in snakebite. In Natural Toxins, 43–48 (Eds Eaker D and Wadstrom T) Oxford: Pergamon Press

    Chapter  Google Scholar 

  34. Myint-Lwin et al. (1985) Bites by Russell's viper (Vipera russelli siamensis) in Burma: haemostatic, vascular and renal disturbances and response to treatment. Lancet 2: 1259–1264

    Article  CAS  PubMed  Google Scholar 

  35. Steinbeck AW (1960) Nephrotic syndrome developing after snake bite. Med J Aust 47: 543–545

    PubMed  Google Scholar 

  36. Krishnan MN et al. (2001) Severe panhypopituitarism and central diabetes insipidus following snake bite: unusual presentation as torsades de pointes. J Assoc Physicians India 49: 923–924

    CAS  PubMed  Google Scholar 

  37. Pinho FM et al. (2005) Acute renal failure after Crotalus durissus snakebite: a prospective survey on 100 patients. Kidney Int 67: 659–667

    Article  PubMed  Google Scholar 

  38. Cobcroft RG et al. (1997) Hemolytic uremic syndrome following taipan envenomation with response to plasmapheresis. Pathology 29: 399–402

    Article  CAS  PubMed  Google Scholar 

  39. Sitprija V et al. (1971) Haemodialysis in poisoning by sea-snake venom. Br Med J 3: 218–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ponraj D and Gopalakrishnakone P (1997) Renal lesions in rhabdomyolysis caused by Pseudechis australis snake myotoxin. Kidney Int 51: 1956–1969

    Article  CAS  PubMed  Google Scholar 

  41. Sakwiwatkul K et al. (2002) Renal function following sea snake venom (Lapemis hardwicki) administration in dogs treated with sodium bicarbonate solution. J Nat Toxins 11: 111–121

    CAS  PubMed  Google Scholar 

  42. Lu X et al. (2005) Snake venom metalloproteinase containing a disintegrin-like domain, its structure-activity relationships at interacting with integrins. Curr Med Chem Cardiovasc Hematol Agents 3: 249–260

    Article  CAS  PubMed  Google Scholar 

  43. Bridges LC and Bowditch RD (2005) ADAM-integrin interaction: potential integrin regulated ectodomain shedding activity. Curr Pharm Des 11: 837–847

    Article  CAS  PubMed  Google Scholar 

  44. Oliveira JC et al. (2002) Toxicity of South American snake venoms measured by an in vitro cell culture assay. Toxicon 40: 321–325

    Article  CAS  PubMed  Google Scholar 

  45. Willingen CC et al. (1995) In vitro nephrotoxicity of Russell's viper venom. Kidney Int 47: 518–528

    Article  Google Scholar 

  46. Chaiyabutr N and Sitprija V (1999) Pathophysiological effects of Russell's viper venom on renal function. J Nat Toxins 8: 351–358

    CAS  PubMed  Google Scholar 

  47. Ratcliffe PJ et al. (1989) Direct nephrotoxicity of Russell's viper venom demonstrated in the isolated perfused rat kidney. Am J Trop Med Hyg 40: 312–319

    Article  CAS  PubMed  Google Scholar 

  48. Lisy O et al. (1999) Renal actions of synthetic Dendroaspis natriuretic peptide. Kidney Int 56: 502–508

    Article  CAS  PubMed  Google Scholar 

  49. Ho PL et al. (1997) Cloning of an unusual natriuretic peptide from the South American coral snake Micrurus corallinus. Eur J Biochem 250: 144–149

    Article  CAS  PubMed  Google Scholar 

  50. Murayama N et al. (1997) Cloning and sequence analysis of a Bothrops jararaca cDNA encoding a precursor of seven bradykinin-potentiating peptides and a C-type natriuretic peptide. Proc Natl Acad Sci USA 94: 1189–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Varagunam T and Panabokke RG (1970) Bilateral cortical necrosis of the kidneys following snake bite. Postgrad Med J 46: 449–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sitprija V and Boonpucknavig V (1979) Snake venoms and nephrotoxicity. In Snake Venoms, 997–1018 (Ed. Lee CY) Berlin: Springer-Verlag

    Chapter  Google Scholar 

  53. Sitprija V and Boonpucknavig V (1983) Glomerular changes in tropical viper bite in man. Toxicon 21 (Suppl 3): 401–403

    Article  Google Scholar 

  54. Elming H and Sølling K (1994) Urine protein excretion after Hymenoptera sting. Scand J Urol Nephrol 28: 13–15

    Article  CAS  PubMed  Google Scholar 

  55. Cuoghi D et al. (1988) Bee sting and relapse of nephrotic syndrome. Child Nephrol Urol 9: 82–83

    PubMed  Google Scholar 

  56. Bresolin NL et al. (2002) Acute renal failure following massive attack by Africanized bee stings. Pediatr Nephrol 17: 625–627

    Article  PubMed  Google Scholar 

  57. Bhatta N et al. (2005) Acute renal failure following multiple wasp stings. Pediatr Nephrol 20: 1809–1810

    Article  PubMed  Google Scholar 

  58. Oliveira EC et al. (2007) Pathological findings in dogs after multiple Africanized bee stings. Toxicon 49: 1214–1218

    Article  CAS  PubMed  Google Scholar 

  59. Kolecki P (1999) Delayed toxic reaction following massive bee envenomation. Ann Emerg Med 33: 114–116

    Article  CAS  PubMed  Google Scholar 

  60. Watemberg N et al. (1995) Fatal multiple organ failure following massive hornet stings. J Toxicol Clin Toxicol 33: 471–474

    Article  CAS  PubMed  Google Scholar 

  61. Habermann E (1972) Bee venom and wasp venoms. Science 177: 314–322

    Article  CAS  PubMed  Google Scholar 

  62. Gauldie J et al. (1976) The peptide components of bee venom. Eur J Biochem 61: 369–376

    Article  CAS  PubMed  Google Scholar 

  63. Han HJ et al. (2002) The water-soluble fraction (<10 kD) of bee venom (Apis mellifera) produces inhibitory effect on apical transporters in renal proximal tubule cells. Kidney Blood Press Res 25: 375–383

    Article  CAS  PubMed  Google Scholar 

  64. Fletcher JE and Jiang MS (1993) Possible mechanisms of action of cobra snake venom cardiotoxins and bee venom melittin. Toxicon 31: 669–695

    Article  CAS  PubMed  Google Scholar 

  65. Guimarães JV et al. (2004) Cardiovascular profile after intravenous injection of Africanized bee venom in awake rats. Rev Inst Med Trop Sao Paulo 46: 55–58

    Article  PubMed  Google Scholar 

  66. Grisotto LS et al. (2006) Mechanisms of bee venom-induced acute renal failure. Toxicon 48: 44–54

    Article  CAS  PubMed  Google Scholar 

  67. dos Reis MA et al. (1998) Acute renal failure in experimental envenomation with Africanized bee venom. Ren Fail 20: 39–51

    Article  CAS  PubMed  Google Scholar 

  68. Zaman F et al. (2001) Minimal change glomerulonephritis following a wasp sting. Am J Nephrol 21: 486–489

    Article  CAS  PubMed  Google Scholar 

  69. Tasic V (2000) Nephrotic syndrome in a child after a bee sting. Pediatr Nephrol 15: 245–247

    Article  CAS  PubMed  Google Scholar 

  70. Pipelzadeh MH et al. (2007) An epidemiological and a clinical study on scorpionism by the Iranian scorpion Hemiscorpius lepturus. Toxicon 50: 984–992

    Article  CAS  PubMed  Google Scholar 

  71. Revelo MP et al. (1996) Body distribution of Tityus serrulatus scorpion venom in mice and effects of scorpion antivenom. Toxicon 34: 1119–1125

    Article  CAS  PubMed  Google Scholar 

  72. Angelo K et al. (2003) A radiolabeled peptide ligand of the hERG channel, [125I]-BeKm−1. Pflugers Arch 447: 55–63

    Article  CAS  PubMed  Google Scholar 

  73. Fuller MD et al. (2004) Inhibition of CFTR channels by a peptide toxin of scorpion venom. Am J Physiol Cell Physiol 287: C1328–C1341

    Article  CAS  PubMed  Google Scholar 

  74. Gueron M et al. (1992) Renin and aldosterone levels and hypertension following envenomation in humans by the yellow scorpion Leiurus quinquestriatus. Toxicon 30: 765–767

    Article  CAS  PubMed  Google Scholar 

  75. Dousset E et al. (2005) Evidence that free radical generation occurs during scorpion envenomation. Comp Biochem Physiol C. Toxicol Pharmacol 140: 221–226

    Article  CAS  PubMed  Google Scholar 

  76. Pessini AC et al. (2006) Mediators involved in the febrile response induced by Tityus serrulatus scorpion venom in rats. Toxicon 48: 556–566

    Article  CAS  PubMed  Google Scholar 

  77. Vasconcelos F et al. (2005) Effects of voltage-gated Na+ channel toxins from Tityus serrulatus venom on rat arterial blood pressure and plasma catecholamines. Comp Biochem Physiol C. Toxicol Pharmacol 141: 85–92

    Article  PubMed  CAS  Google Scholar 

  78. El Nasr MS et al. (1992) The effect of scorpion envenomation on the different organs of albino mice. J Egypt Soc Parasitol 22: 833–838

    CAS  PubMed  Google Scholar 

  79. Pipelzadeh MH et al. (2006) In vitro and in vivo studies on some toxic effects of the venom from Hemiscorpius lepturus scorpion. Toxicon 48: 93–103

    Article  CAS  PubMed  Google Scholar 

  80. Reddy CR et al. (1972) Pathology of scorpion venom poisoning. J Trop Med Hyg 75: 98–100

    CAS  PubMed  Google Scholar 

  81. Radmanesh M (1990) Clinical study of Hemiscorpius lepturus sting in Iran. J Trop Med Hyg 93: 327–332

    CAS  PubMed  Google Scholar 

  82. Bahloul M et al. (2004) Hemolytic-uremic syndrome secondary to scorpion envenomation (apropos of 2 cases) [French]. Nephrologie 25: 49–51

    CAS  PubMed  Google Scholar 

  83. Kibukamusoke JW et al. (1984) Renal effects of envenomation. In Tropical Nephrology, 170–198 (Ed. Kibukamusoke JW) Canberra: Citforge Pty Ltd

    Google Scholar 

  84. de Souza AL et al. (2008) Loxosceles venom-induced cytokine activation, hemolysis, and acute kidney injury. Toxicon 51: 151–156

    Article  CAS  PubMed  Google Scholar 

  85. Ramialiharisoa A et al. (1994) Latrodectism in Madagascar [French]. Med Trop. (Mars) 54: 127–130

    CAS  Google Scholar 

  86. Taylor EH and Denny WF (1966) Hemolysis, renal failure and death, presumed secondary to bite of brown recluse spider. South Med J 59: 1209–1211

    Article  CAS  PubMed  Google Scholar 

  87. Zambrano A et al. (2005) Severe loxoscelism with lethal outcome: report of one case [Spanish]. Rev Med Chil 133: 219–223

    Article  PubMed  Google Scholar 

  88. Lung JM and Mallory SB (2000) A child with spider bite and glomerulonephritis: a diagnostic challenge. Int J Dermatol 39: 287–289

    Article  CAS  PubMed  Google Scholar 

  89. Lee S and Lynch KR (2005) Brown recluse spider (Loxosceles reclusa) venom phospholipase D (PLD) generates lysophosphatidic acid (LPA). Biochem J 391: 317–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chaim OM et al. (2006) Brown spider dermonecrotic toxin directly induces nephrotoxicity. Toxicol Appl Pharmacol 211: 64–77

    Article  CAS  PubMed  Google Scholar 

  91. Veiga SS et al. (2001) Extracellular matrix molecules as targets for brown spider venom toxins. Braz J Med Biol Res 34: 843–850

    Article  CAS  PubMed  Google Scholar 

  92. Grishin F (1999) Polypeptide neurotoxins from spider venoms. Eur J Biochem 264: 276–280

    Article  CAS  PubMed  Google Scholar 

  93. Vieira LB et al. (2005) Inhibition of high voltage-activated calcium channels by spider toxin PnTx3-6. J Pharmacol Exp Ther 314: 1370–1377

    Article  CAS  PubMed  Google Scholar 

  94. Reis HJ et al. (1999) Inhibition of glutamate uptake by a polypeptide toxin (phoneutriatoxin 3-4) from the spider Phoneutria nigriventer. Biochem J 343: 413–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Grasso A and Mastrogiacomo A (1992) Alpha-latroxin: preparation and effects on calcium fluxes. FEMS Microbiol Immunol 5: 131–137

    CAS  PubMed  Google Scholar 

  96. Burdmann EA et al. (1996) Severe acute renal failure induced by the venom of Lonomia caterpillars. Clin Nephrol 46: 337–339

    CAS  PubMed  Google Scholar 

  97. Duarte AC et al. (1994) Acute kidney failure by accidents with Lonomia obliqua [Spanish]. Nefrol Latinoamer 1: 38–40

    Google Scholar 

  98. Gamborgi GP et al. (2006) Acute renal failure provoked by toxin from caterpillars of the species Lonomia obliqua. Toxicon 47: 68–74

    Article  CAS  PubMed  Google Scholar 

  99. Pinto AF et al. (2006) Proteases from Lonomia obliqua venomous secretions: comparison of procoagulant, fibrin(ogen)olytic and amidolytic activities. Toxicon 47: 113–121

    Article  CAS  PubMed  Google Scholar 

  100. Brinkman D and Burnell J (2007) Identification, cloning and sequencing of two major venom proteins from the box jellyfish, Chironex fleckeri. Toxicon 50: 850–860

    Article  CAS  PubMed  Google Scholar 

  101. Koyama T et al. (2003) Haemodynamic effects of the crude venom from nematocysts of the box-jellyfish Chiropsalmus quadrigatus (Habu-kurage) in anaesthetized rabbits. Toxicon 41: 621–631

    Article  CAS  PubMed  Google Scholar 

  102. Ramasamy S et al. (2003) The in vitro effects of two chirodropid (Chironex fleckeri and Chiropsalmus sp.) venom: efficacy of box jellyfish antivenom. Toxicon 41: 703–711

    Article  CAS  PubMed  Google Scholar 

  103. Endean R et al. (1993) Toxins from the box-jellyfish Chironex fleckeri. Toxicon 31: 397–410

    Article  CAS  PubMed  Google Scholar 

  104. Spielman FJ et al. (1982) Acute renal failure as a result of Physalia physalis sting. South Med J 75: 1425–1426

    Article  CAS  PubMed  Google Scholar 

  105. Xuan BH et al. (2003) Icthyotoxic ARF after fish gallbladder ingestion: a large case series from Vietnam. Am J Kidney Dis 41: 220–224

    Article  PubMed  Google Scholar 

  106. Centers for Disease Control and Prevention (CDC) (1996) Hepatic and renal toxicity among patients ingesting sheep bile as an unconventional remedy for diabetes mellitus—Saudi Arabia, 1995. MMWR Morb Mortal Wkly Rep 45: 941–943

  107. Logan JL and Ogden DA (1985) Rhabdomyolysis and acute renal failure following the bite of the giant desert centipede Scolopendra heros. West J Med 142: 549–550

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Gomes A et al. (1983) Isolation, purification and pharmacodynamics of a toxin from the venom of the centipede Scolopendra subspinipes dehaani Brandt. Indian J Exp Biol 21: 203–207

    CAS  PubMed  Google Scholar 

  109. Mallari RQ et al. (1996) Ingestion of a blister beetle (Meloidae family). Pediatrics 98: 458–459

    CAS  PubMed  Google Scholar 

  110. Karras DJ et al. (1996) Poisoning from “Spanish fly” (cantharidin). Am J Emerg Med 14: 478–483

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sitprija, V. Animal toxins and the kidney. Nat Rev Nephrol 4, 616–627 (2008). https://doi.org/10.1038/ncpneph0941

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0941

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing