Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug Insight: adjunctive therapies in adults with bacterial meningitis

Abstract

Despite the availability of effective antibiotics, mortality and morbidity rates associated with bacterial meningitis are high. Studies in animals have shown that bacterial lysis, induced by treatment with antibiotics, leads to inflammation in the subarachnoid space, which might contribute to an unfavorable outcome. The management of adults with bacterial meningitis can be complex, and common complications include meningoencephalitis, systemic compromise, stroke and raised intracranial pressure. Various adjunctive therapies have been described to improve outcome in such patients, including anti-inflammatory agents, anticoagulant therapies, and strategies to reduce intracranial pressure. Although a recent randomized trial provided evidence in favor of dexamethasone treatment, few randomized clinical studies are available for other adjunctive therapies in adults with bacterial meningitis. This review briefly summarizes the pathogenesis and pathophysiology of bacterial meningitis, and focuses on the evidence for and against use of the available adjunctive therapies in clinical practice.

Key Points

  • Common complications of bacterial meningitis include meningoencephalitis, systemic compromise, stroke and raised intracranial pressure

  • Potential adjunctive therapies to manage these complications include anti-inflammatory agents, anticoagulant therapies, and strategies to reduce intracranial pressure

  • Dexamethasone is the only currently accepted adjunctive therapy for the treatment of patients with bacterial meningitis; no other adjunctive therapy has proven clinical efficacy

  • For the future, drugs that increase fibrinolysis, such as nimodipine, should be explored in experimental meningitis models, and clinical trials should be performed to evaluate moderate hypothermia, intensive insulin therapy and glycerol in patients with bacterial meningitis

  • Advances in experimental meningitis are promising, and, among the new therapies arising from these studies, N-acetylcysteine seems to be closest to a clinical application

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multiple complications in a patient with pneumococcal meningitis.
Figure 2: Simplified diagram of pathophysiology in bacterial meningitis.
Figure 3: Causes of raised intracranial pressure in a patient with bacterial meningitis.
Figure 4: Targets for therapeutic intervention in the immune response to bacterial meningitis.

Similar content being viewed by others

References

  1. van de Beek D et al. (2006) Community-acquired bacterial meningitis in adults. N Engl J Med 354: 44–53

    Article  CAS  PubMed  Google Scholar 

  2. van de Beek D et al. (2004) Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med 351: 1849–1859

    Article  CAS  PubMed  Google Scholar 

  3. Weisfelt M et al. (2006) Clinical features, complications and outcome in adults with pneumococcal meningitis: a prospective series of 352 cases. Lancet Neurol 5: 123–129

    Article  PubMed  Google Scholar 

  4. van de Beek D et al. (2002) Cognitive impairment in adults with good recovery after bacterial meningitis. J Infect Dis 186: 1047–1052

    Article  PubMed  Google Scholar 

  5. Weisfelt M et al. (2006) Pneumococcal meningitis in adults: new approaches to management and prevention. Lancet Neurol 5: 332–342

    Article  CAS  PubMed  Google Scholar 

  6. van de Beek D and de Gans J (2006) Dexamethasone in adults with community-acquired bacterial meningitis. Drugs 66: 415–427

    Article  CAS  PubMed  Google Scholar 

  7. Emonts M et al. (2003) Host genetic determinants of Neisseria meningitidis infections. Lancet Infect Dis 3: 565–577

    Article  CAS  PubMed  Google Scholar 

  8. Koedel U et al. (2002) Pathogenesis and pathophysiology of pneumococcal meningitis. Lancet Infect Dis 2: 721–736

    Article  PubMed  Google Scholar 

  9. Kim KS (2003) Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury. Nat Rev Neurosci 4: 376–385

    Article  CAS  PubMed  Google Scholar 

  10. van de Beek D et al. (2003) Corticosteroids for acute bacterial meningitis. The Cochrane Database of Systematic Reviews, Issue 3, Art. No CD004405

  11. van der Poll T (2001) Immunotherapy of sepsis. Lancet Infect Dis 1: 165–174

    Article  CAS  PubMed  Google Scholar 

  12. Levi M et al. (2004) Bidirectional relation between inflammation and coagulation. Circulation 109: 2698–2704

    Article  PubMed  Google Scholar 

  13. Koedel U et al. (2004) MyD88 is required for mounting a robust host immune response to Streptococcus pneumoniae in the CNS. Brain 127: 1437–1445

    Article  PubMed  Google Scholar 

  14. Paul R et al. (2004) Inflammatory response during bacterial meningitis is unchanged in Fas- and Fas ligand-deficient mice. J Neuroimmunol 152: 78–82

    Article  CAS  PubMed  Google Scholar 

  15. Mitchell L et al. (2004) Dual phases of apoptosis in pneumococcal meningitis. J Infect Dis 190: 2039–2046

    Article  PubMed  Google Scholar 

  16. Bermpohl D et al. (2005) Bacterial programmed cell death of cerebral endothelial cells involves dual death pathways. J Clin Invest 115: 1607–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hirst RA et al. (2003) Streptococcus pneumoniae damages the ciliated ependyma of the brain during meningitis. Infect Immun 71: 6095–6100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Scheld WM et al. (1980) Cerebrospinal fluid outflow resistance in rabbits with experimental meningitis: alterations with penicillin and methylprednisolone. J Clin Invest 66: 243–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Täuber MG et al. (1985) Effects of ampicillin and corticosteroids on brain water content, cerebrospinal fluid pressure, and cerebrospinal fluid lactate levels in experimental pneumococcal meningitis. J Infect Dis 151: 528–534

    Article  PubMed  Google Scholar 

  20. de Gans J and van de Beek D (2002) Dexamethasone in adults with bacterial meningitis. N Engl J Med 347: 1549–1556

    Article  CAS  PubMed  Google Scholar 

  21. van de Beek D and de Gans J (2004) Dexamethasone and pneumococcal meningitis. Ann Intern Med 141: 327

    Article  PubMed  Google Scholar 

  22. Weisfelt M et al. (2006) Dexamethasone in adults with pneumococcal meningitis: risk factors for death. Eur J Clin Microb Infect Dis 25: 73–78

    Article  CAS  Google Scholar 

  23. van de Beek D et al. (2004) Steroids in adults with acute bacterial meningitis: a systematic review. Lancet Infect Dis 4: 139–143

    Article  CAS  PubMed  Google Scholar 

  24. Cooper MS and Stewart PM (2003) Corticosteroid insufficiency in acutely ill patients. N Engl J Med 348: 727–734

    Article  CAS  PubMed  Google Scholar 

  25. Annane D et al. (2002) Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 288: 862–871

    Article  CAS  PubMed  Google Scholar 

  26. Leib SL et al. (2003) Dexamethasone aggravates hippocampal apoptosis and learning deficiency in pneumococcal meningitis in infant rats. Pediatr Res 54: 353–357

    Article  CAS  PubMed  Google Scholar 

  27. Alejandria MM et al. (2002) Intravenous immunoglobulin for treating sepsis and septic shock. The Cochrane Database of Systematic Reviews, Issue 1, Art. No CD001090

    Google Scholar 

  28. Gigliotti F et al. (1987) IgG penetration into the cerebrospinal fluid in a rabbit model of meningitis. J Infect Dis 156: 394–398

    Article  CAS  PubMed  Google Scholar 

  29. Wippl G (1977) Therapy of purulent meningitis with immunoglobulins [German]. Padiatr Padol 12: 309–312

    CAS  PubMed  Google Scholar 

  30. Noack R et al. (1987) Immunoglobulins in the treatment of bacterial meningitis in childhood [German]. Infection 15: 11–15

    Article  CAS  PubMed  Google Scholar 

  31. Neu IS and Pelka RB (1982) Immunoglobulins in bacterial and viral meningitis: results of a controlled randomized clinical study of intravenous and intrathecal application [German]. Forschr Med 17: 802–809

    Google Scholar 

  32. Kastenbauer S and Pfister HW (2003) Pneumococcal meningitis in adults—spectrum of complications and prognostic factors in a series of 87 cases. Brain 126: 1015–1025

    Article  PubMed  Google Scholar 

  33. Bernard GR et al. (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344: 699–709

    Article  CAS  PubMed  Google Scholar 

  34. Abraham E et al. (2005) Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med 353: 1332–1341

    Article  CAS  PubMed  Google Scholar 

  35. Vincent JL et al. (2005) Drotrecogin alfa (activated) in patients with severe sepsis presenting with purpura fulminans, meningitis, or meningococcal disease: a retrospective analysis of patients enrolled in recent clinical studies. Crit Care 9: R331–R343

    Article  PubMed  PubMed Central  Google Scholar 

  36. Haring HP et al. (1993) Time course of cerebral blood flow velocity in central nervous system infections: a transcranial Doppler sonography study. Arch Neurol 50: 98–101

    Article  CAS  PubMed  Google Scholar 

  37. Winkler J et al. (1994) Surgical intervention and heparin-anticoagulation improve prognosis of rhinogenic/otogenic and posttraumatic meningitis. Acta Neurol Scand 89: 293–298

    Article  CAS  PubMed  Google Scholar 

  38. MacFarlane JT et al. (1977) Failure of heparin to alter the outcome of pneumococcal meningitis. BMJ 2: 1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weber JR et al. (1977) Heparin inhibits leukocyte rolling in pial vessels and attenuates inflammatory changes in a rat model of experimental bacterial meningitis. J Cereb Blood Flow Metab 17: 1221–1229

    Article  Google Scholar 

  40. Stam J et al. (2002) Anticoagulation for cerebral sinus thrombosis. The Cochrane Database of Systematic Reviews, Issue 4, Art. No CD002005

    Google Scholar 

  41. Stam J (2005) Thrombosis of the cerebral veins and sinuses. N Engl J Med 352: 1791–1798

    Article  CAS  PubMed  Google Scholar 

  42. Winkler F et al. (2002) Role of the urokinase plasminogen activator system in patients with bacterial meningitis. Neurology 59: 1350–1355

    Article  CAS  PubMed  Google Scholar 

  43. Hermans PW et al. (1999) 4G/5G promoter polymorphism in the plasminogen-activator-inhibitor-1 gene and outcome of meningococcal disease. Lancet 354: 556–560

    Article  CAS  PubMed  Google Scholar 

  44. Roos YB et al. (2001) Nimodipine increases fibrinolytic activity in patients with aneurysmal subarachnoid hemorrhage. Stroke 32: 1860–1862

    Article  CAS  PubMed  Google Scholar 

  45. Hosoglu S et al. (1997) Effects of nimodipine on the cerebrovascular and neuronal changes during pneumococcal meningitis in the rat. Acta Microbiol Immunol Hung 44: 271–279

    CAS  PubMed  Google Scholar 

  46. Paul R et al. (2000) Reduction of intracranial pressure by nimodipine in experimental pneumococcal meningitis. Crit Care Med 28: 2552–2556

    Article  CAS  PubMed  Google Scholar 

  47. Unterberg AW et al. (2004) Edema and brain trauma. Neuroscience 129: 1021–1029

    Article  CAS  PubMed  Google Scholar 

  48. Wijdicks EF and Diringer MN (1998) Middle cerebral artery territory infarction and early brain swelling: progression and effect of age on outcome. Mayo Clin Proc 73: 829–836

    Article  CAS  PubMed  Google Scholar 

  49. Muizelaar JP et al. (1991) Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg 75: 731–739

    Article  CAS  PubMed  Google Scholar 

  50. Moller K et al. (2000) Effect of short-term hyperventilation on cerebral blood flow autoregulation in patients with acute bacterial meningitis. Stroke 31: 1116–1122

    Article  CAS  PubMed  Google Scholar 

  51. Moller K et al. (2002) Cerebral blood flow, oxidative metabolism and cerebrovascular carbon dioxide reactivity in patients with acute bacterial meningitis. Acta Anaesthesiol Scand 46: 567–578

    Article  CAS  PubMed  Google Scholar 

  52. Muizelaar JP et al. (1983) Mannitol causes compensatory cerebral vasoconstriction and vasodilation in response to blood viscosity changes. J Neurosurg 59: 822–828

    Article  CAS  PubMed  Google Scholar 

  53. Burke A et al. (1981) The effects of mannitol on blood viscosity. J Neurosurg 55: 550–553

    Article  CAS  PubMed  Google Scholar 

  54. Schrot RJ and Muizelaar JP (2002) Mannitol in acute traumatic brain injury. Lancet 359: 1633–1634

    Article  PubMed  Google Scholar 

  55. Syrogiannopoulos GA et al. (1987) Mannitol treatment in experimental Haemophilus influenzae type b meningitis. Pediatr Res 22: 118–122

    Article  CAS  PubMed  Google Scholar 

  56. Lorenzl S et al. (1996) Mannitol, but not allopurinol, modulates changes in cerebral blood flow, intracranial pressure, and brain water content during pneumococcal meningitis in the rat. Crit Care Med 24: 1874–1880

    Article  CAS  PubMed  Google Scholar 

  57. Kilpi T et al. (1995) Oral glycerol and intravenous dexamethasone in preventing neurologic and audiologic sequelae of childhood bacterial meningitis. Pediatr Infect Dis J 14: 270–278

    Article  CAS  PubMed  Google Scholar 

  58. Choi CW et al. (2005) Effects of hypertonic (7%) saline on brain injury in experimental Escherichia coli meningitis. J Korean Med Sci 20: 870–876

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lindvall P et al. (2004) Reducing intracranial pressure may increase survival among patients with bacterial meningitis. Clin Infect Dis 38: 384–390

    Article  PubMed  Google Scholar 

  60. Cooke RS and Patterson V (1999) Acute obstructive hydrocephalus complicating bacterial meningitis: hydrocephalus was probably non-obstructive. BMJ 318: 124

    Article  CAS  PubMed  Google Scholar 

  61. Wang KW et al. (2005) Clinical relevance of hydrocephalus in bacterial meningitis in adults. Surg Neurol 64: 61–65

    Article  PubMed  Google Scholar 

  62. Mactier H et al. (1998) Acute obstructive hydrocephalus complicating bacterial meningitis in childhood. BMJ 316: 1887–1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hypothermia after Cardiac Arrest Study Group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346: 549–556

  64. Bernard SA et al. (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346: 557–563

    Article  PubMed  Google Scholar 

  65. Shankaran S et al. (2005) Whole-body hypothermia for neonates with hypoxic–ischemic encephalopathy. N Engl J Med 353: 1574–1584

    Article  CAS  PubMed  Google Scholar 

  66. Olsen TS et al. (2003) Therapeutic hypothermia for acute stroke. Lancet Neurol 2: 410–416

    Article  PubMed  Google Scholar 

  67. McIntyre LA et al. (2003) Prolonged therapeutic hypothermia after traumatic brain injury in adults: a systematic review. JAMA 289: 2992–2999

    Article  PubMed  Google Scholar 

  68. Wijdicks EF (2004) Induced hypothermia in neurocatastrophes: feeling the chill. Rev Neurol Dis 1: 10–15

    PubMed  Google Scholar 

  69. Angstwurm K et al. (2000) Induced hypothermia in experimental pneumococcal meningitis. J Cereb Blood Flow Metab 20: 834–838

    Article  CAS  PubMed  Google Scholar 

  70. Deng H et al. (2003) Mild hypothermia inhibits inflammation after experimental stroke and brain inflammation. Stroke 34: 2495–2501

    Article  PubMed  Google Scholar 

  71. Harrigan MR (1996) Cerebral salt wasting syndrome: a review. Neurosurgery 38: 152–160

    Article  CAS  PubMed  Google Scholar 

  72. Oates-Whitehead R et al. (2005) Fluid therapy for acute bacterial meningitis. The Cochrane Database of Systematic Reviews, Issue 3, Art. No CD004786

  73. Täuber MG et al. (1993) Fluid administration, brain edema, and cerebrospinal fluid lactate and glucose concentrations in experimental Escherichia coli meningitis. J Infect Dis 168: 473–476

    Article  PubMed  Google Scholar 

  74. Begg N et al. (1999) Consensus statement on diagnosis, investigation, treatment and prevention of acute bacterial meningitis in immunocompetent adults. J Infect 39: 1–15

    Article  CAS  PubMed  Google Scholar 

  75. Marik PE and Raghavan M (2004) Stress-hyperglycemia, insulin and immunomodulation in sepsis. Intensive Care Med 30: 748–756

    Article  PubMed  Google Scholar 

  76. Hansen TK et al. (2003) Intensive insulin therapy exerts antiinflammatory effects in critically ill patients and counteracts the adverse effect of low mannose-binding lectin levels. J Clin Endocrinol Metab 88: 1082–1088

    Article  CAS  PubMed  Google Scholar 

  77. Van den Berghe G et al. (2006) Intensive insulin therapy in the medical ICU. N Engl J Med 354: 449–461

    Article  CAS  PubMed  Google Scholar 

  78. Ivey NS et al. (2005) A new method for measuring blood–brain barrier permeability demonstrated with Europium-bound albumin during experimental lipopolysaccharide (LPS) induced meningitis in the rat. J Neurosci Methods 142: 91–95

    Article  CAS  PubMed  Google Scholar 

  79. Angstwurm K et al. (2004) Tyrosine kinase inhibition reduces inflammation in the acute stage of experimental pneumococcal meningitis. Infect Immun 72: 3294–3298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kastenbauer S et al. (2004) Protective role of NF-κB1 (p50) in experimental pneumococcal meningitis. Eur J Pharmacol 498: 315–318

    Article  CAS  PubMed  Google Scholar 

  81. Bottcher T et al. (2004) Clindamycin is neuroprotective in experimental Streptococcus pneumoniae meningitis compared with ceftriaxone. J Neurochem 91: 1450–1460

    Article  PubMed  CAS  Google Scholar 

  82. Saukkonen K et al. (1990) The role of cytokines in the generation of inflammation and tissue damage in experimental gram-positive meningitis. J Exp Med 171: 439–448

    Article  CAS  PubMed  Google Scholar 

  83. Leib SL et al. (2001) Inhibition of matrix metalloproteinases and tumour necrosis factor alpha converting enzyme as adjuvant therapy in pneumococcal meningitis. Brain 124: 1734–1742

    Article  CAS  PubMed  Google Scholar 

  84. Kastenbauer S (2006) Pneumococcal meningitis: a 21st century perspective. Lancet Neurol 5: 104–105

    Article  PubMed  Google Scholar 

  85. Klein M et al. (2003) Meningitis-associated hearing loss: protection by adjunctive antioxidant therapy. Ann Neurol 54: 451–458

    Article  CAS  PubMed  Google Scholar 

  86. Koedel U et al. (2002) Meningitis-associated central nervous system complications are mediated by the activation of poly(ADP-ribose) polymerase. J Cereb Blood Flow Metab 22: 39–49

    Article  CAS  PubMed  Google Scholar 

  87. Koedel U et al. (2002) Role of caspase-1 in experimental pneumococcal meningitis: evidence from pharmacologic caspase inhibition and caspase-1-deficient mice. Ann Neurol 51: 319–329

    Article  CAS  PubMed  Google Scholar 

  88. Braun JS et al. (1999) Neuroprotection by a caspase inhibitor in acute bacterial meningitis. Nature Med 5: 298–302

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr E Aronica for her help with Figure 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diederik van de Beek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van de Beek, D., Weisfelt, M., de Gans, J. et al. Drug Insight: adjunctive therapies in adults with bacterial meningitis. Nat Rev Neurol 2, 504–516 (2006). https://doi.org/10.1038/ncpneuro0265

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneuro0265

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing