Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of Disease: signaling of the insulin-like growth factor 1 receptor pathway—therapeutic perspectives in cancer

Abstract

The insulin-like growth factor 1 (IGF1) signaling pathway is implicated in the development of cancer. High levels of circulating IGF1 and certain genetic polymorphisms of IGF1 and IGFBP3 are associated with an increased risk of several common cancers. The IGF1 receptor (IGF1R) has been shown to be expressed in a wide range of tumors, and IGF1R signaling is crucial for tumor transformation and the survival of malignant cells. Several monoclonal antibodies and small-molecule inhibitors have been tested in preclinical studies and early-phase clinical studies. IGF1R signaling interferes with numerous growth factors and receptors such as VEGF and EGFR. In the experimental system, IGF1R signaling has been found to correlate with resistance to therapies based on the inhibition of EGFR and HER2. This Review highlights the most relevant studies in this exciting area of research, focusing in particular on the role of IGF1R in resistance to other receptor-targeted therapies for cancer.

Key Points

  • IGF1R is expressed in a large range of tumors and is crucial for tumor transformation and survival of malignant cells

  • IGF1R signaling interferes with numerous growth factors and receptors pathways such as VEGF and EGFR, and IGF1R signaling has been found to correlate with resistance to both anti-EGFR therapies and those that target HER2

  • Several monoclonal antibodies and smallmolecular inhibitors are being tested in preclinical and clinical studies; these compounds would need to distinguish between the highly homologous tyrosine kinase domain of the IGF1R and the insulin receptor

  • Inhibition of IGF1R could be particularly useful in combination with other anticancer therapies because of its strong antiapoptotic activity and interplay with crucial tumor signals such as EGFR, mTOR, VEGF

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the insulin-like growth factor 1 receptor pathway.

Similar content being viewed by others

References

  1. Baserga R (2005) The insulin-like growth factor-I receptor as a target for cancer therapy. Expert Opin Ther Targets 9: 753–768

    Article  CAS  PubMed  Google Scholar 

  2. Pollak MN et al. (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4: 505–518

    Article  CAS  PubMed  Google Scholar 

  3. Fuhrer D et al. (2005) Evaluation of insulin-like growth factor II, cyclooxygenase-2, ets-1 and thyroid-specific thyroglobulin mRNA expression in benign and malignant thyroid tumours. Eur J Endocrinol 152: 785–790

    Article  CAS  PubMed  Google Scholar 

  4. Kooijman R et al. (1995) Insulin-like growth factor induces phosphorylation of immunoreactive insulin receptor substrate and its association with phosphatidylinositol-3 kinase in human thymocytes. J Exp Med 182: 593–597

    Article  CAS  PubMed  Google Scholar 

  5. Soon L et al. (1999) Insulin-like growth factor I synergizes with interleukin 4 for hematopoietic cell proliferation independent of insulin receptor substrate expression. Mol Cell Biol 19: 3816–3828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hernandez-Sanchez C et al. (1995) The role of the tyrosine kinase domain of the insulin-like growth factor-I receptor in intracellular signaling, cellular proliferation, and tumorigenesis. J Biol Chem 270: 29176–29181

    Article  CAS  PubMed  Google Scholar 

  7. Kim B et al. (1998) Insulin receptor substrate 2 and Shc play different roles in insulin-like growth factor I signaling. J Biol Chem 273: 34543–34550

    Article  CAS  PubMed  Google Scholar 

  8. Beitner-Johnson D and LeRoith D (1995) Insulin-like growth factor-I stimulates tyrosine phosphorylation of endogenous c-Crk. J Biol Chem 270: 5187–5190

    Article  CAS  PubMed  Google Scholar 

  9. D'Ambrosio C et al. (1996) The role of Grb2 in the growth and transformation of mouse embryo cells. Oncogene 12: 371–378

    CAS  PubMed  Google Scholar 

  10. Butler AA et al. (1997) In vivo regulation of Crk II and CrkL proto-oncogenes in the uterus by insulin-like growth factor-I: differential effects on tyrosine phosphorylation and association with paxillin. J Biol Chem 272: 27660–27664

    Article  CAS  PubMed  Google Scholar 

  11. Shaw RJ and Cantley LC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441: 424–430

    Article  CAS  PubMed  Google Scholar 

  12. Wullschleger S et al. (2006) TOR signaling in growth and metabolism. Cell 124: 471–484

    Article  CAS  PubMed  Google Scholar 

  13. Xie Y et al. (1999) Expression of insulin-like growth factor-1 receptor in synovial sarcoma: association with an aggressive phenotype. Cancer Res 59: 3588–3591

    CAS  PubMed  Google Scholar 

  14. Ouban A et al. (2003) Expression and distribution of insulin-like growth factor-1 receptor in human carcinomas. Hum Pathol 34: 803–808

    Article  CAS  PubMed  Google Scholar 

  15. Khandwala HM et al. (2000) The effects of insulin-like growth factors on tumorigenesis and neoplastic growth. Endocr Rev 21: 215–244

    Article  CAS  PubMed  Google Scholar 

  16. Baserga R et al. (2003) The IGF-1 receptor in cancer biology. Int J Cancer 107: 873–877

    Article  CAS  PubMed  Google Scholar 

  17. Yakar S et al. (2005) The role of the growth hormone/insulin-like growth factor axis in tumor growth and progression: lessons from animal models. Cytokine Growth Factor Rev 16: 407–420

    Article  CAS  PubMed  Google Scholar 

  18. Chan JM et al. (1998) Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 279: 563–566

    Article  CAS  PubMed  Google Scholar 

  19. Chan JM et al. (2002) Insulin-like growth factor-I (IGF-I) and IGF binding protein-3 as predictors of advanced-stage prostate cancer. J Natl Cancer Inst 94: 1099–1106

    Article  CAS  PubMed  Google Scholar 

  20. Habuchi T (2006) Common genetic polymorphisms and prognosis of sporadic cancers: prostate cancer as a model. Future Oncol 2: 233–245

    Article  CAS  PubMed  Google Scholar 

  21. Tsuchiya N et al. (2005) CA repeat polymorphism in the insulin-like growth factor-I gene is associated with increased risk of prostate cancer and benign prostatic hyperplasia. Int J Oncol 26: 225–231

    CAS  PubMed  Google Scholar 

  22. Tsuchiya N et al. (2006) Impact of IGF-I and CYP19 gene polymorphisms on the survival of patients with metastatic prostate cancer. J Clin Oncol 24: 1982–1989

    Article  CAS  PubMed  Google Scholar 

  23. Cheng I et al. (2006) Common genetic variation in IGF1 and prostate cancer risk in the Multiethnic Cohort. J Natl Cancer Inst 98: 123–134

    Article  CAS  PubMed  Google Scholar 

  24. Slomiany MG et al. (2006) IGF-1 induced vascular endothelial growth factor secretion in head and neck squamous cell carcinoma. Biochem Biophys Res Commun 342: 851–858

    Article  CAS  PubMed  Google Scholar 

  25. Slomiany MG and Rosenzweig SA (2006) Hypoxia-inducible factor-1-dependent and -independent regulation of insulin-like growth factor-1-stimulated vascular endothelial growth factor secretion. J Pharmacol Exp Ther 318: 666–675

    Article  CAS  PubMed  Google Scholar 

  26. Li J et al. (2005) Upregulation of VEGF-C by androgen depletion: the involvement of IGF-IR-FOXO pathway. Oncogene 24: 5510–5520

    Article  CAS  PubMed  Google Scholar 

  27. Tang Y et al. (2003) Vascular endothelial growth factor C expression and lymph node metastasis are regulated by the type I insulin-like growth factor receptor. Cancer Res 63: 1166–1171

    CAS  PubMed  Google Scholar 

  28. Stearns M et al. (2005) Activated Ras enhances insulin-like growth factor I induction of vascular endothelial growth factor in prostate epithelial cells. Cancer Res 65: 2085–2088

    Article  CAS  PubMed  Google Scholar 

  29. Burroughs KD et al. (2003) Phosphatidylinositol 3-kinase and mek1/2 are necessary for insulin-like growth factor-I-induced vascular endothelial growth factor synthesis in prostate epithelial cells: a role for hypoxia-inducible factor-1? Mol Cancer Res 1: 312–322

    CAS  PubMed  Google Scholar 

  30. Ueda S et al. (2006) Potential crosstalk between insulin-like growth factor receptor type 1 and epidermal growth factor receptor in progression and metastasis of pancreatic cancer. Mod Pathol 19: 788–796

    Article  CAS  PubMed  Google Scholar 

  31. Cunningham MP et al. (2006) Coexpression of the IGF-IR, EGFR and HER-2 is common in colorectal cancer patients. Int J Oncol 28: 329–335

    PubMed  Google Scholar 

  32. Dunn SE et al. (1998) A dominant negative mutant of the insulin-like growth factor-I receptor inhibits the adhesion, invasion, and metastasis of breast cancer. Cancer Res 58: 3353–3361

    CAS  PubMed  Google Scholar 

  33. Hofmann F and Garcia-Echeverria C (2005) Blocking the insulin-like growth factor-I receptor as a strategy for targeting cancer. Drug Discov Today 10: 1041–1047

    Article  CAS  PubMed  Google Scholar 

  34. Ullrich A et al. (1986) Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. Embo J 5: 2503–2512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Favelyukis S et al. (2001) Structure and autoregulation of the insulin-like growth factor 1 receptor kinase. Nat Struct Biol 8: 1058–1063

    Article  CAS  PubMed  Google Scholar 

  36. Lou M et al. (2006) The first three domains of the insulin receptor differ structurally from the insulin-like growth factor 1 receptor in the regions governing ligand specificity. Proc Natl Acad Sci USA 103: 12429–12434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maloney EK et al. (2003) An anti-insulin-like growth factor I receptor antibody that is a potent inhibitor of cancer cell proliferation. Cancer Res 63: 5073–5083

    CAS  PubMed  Google Scholar 

  38. Sachdev D et al. (2006) Down-regulation of insulin receptor by antibodies against the type I insulin-like growth factor receptor: implications for anti-insulin-like growth factor therapy in breast cancer. Cancer Res 66: 2391–2402

    Article  CAS  PubMed  Google Scholar 

  39. Bladt F et al. (2006) Pre-clinical evaluation of the anti-tumor activity of the IGF1R-specific antibody AVE1642 [abstract]. 2006 AACR annual meeting

  40. Tonra JR et al. (2005) Synergistic anti-tumor effects of anti-EGFR monoclonal antibody Erbitux(R) combined with antibodies targeting IGF1R or VEGFR-2 [abstract]. 2005 AACR annual meeting

  41. Burtrum D et al. (2003) A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res 63: 8912–8921

    CAS  PubMed  Google Scholar 

  42. Mitsiades CS et al. (2004) Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 5: 221–230

    Article  CAS  PubMed  Google Scholar 

  43. Garcia-Echeverria C et al. (2004) In vivo antitumor activity of NVP-AEW541-A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell 5: 231–239

    Article  CAS  PubMed  Google Scholar 

  44. Vasilcanu D et al. (2004) The cyclolignan PPP induces activation loop-specific inhibition of tyrosine phosphorylation of the insulin-like growth factor-1 receptor: link to the phosphatidyl inositol-3 kinase/Akt apoptotic pathway. Oncogene 23: 7854–7862

    Article  CAS  PubMed  Google Scholar 

  45. Girnita A et al. (2004) Cyclolignans as inhibitors of the insulin-like growth factor-1 receptor and malignant cell growth. Cancer Res 64: 236–242

    Article  CAS  PubMed  Google Scholar 

  46. Stromberg T et al. (2006) IGF-1 receptor tyrosine kinase inhibition by the cyclolignan PPP induces G2/M-phase accumulation and apoptosis in multiple myeloma cells. Blood 107: 669–678

    Article  PubMed  CAS  Google Scholar 

  47. Girnita A et al. (2006) The insulin-like growth factor-I receptor inhibitor picropodophyllin causes tumor regression and attenuates mechanisms involved in invasion of uveal melanoma cells. Clin Cancer Res 12: 1383–1391

    Article  CAS  PubMed  Google Scholar 

  48. Haluska P et al. (2006) In vitro and in vivo antitumor effects of the dual insulin-like growth factor-I/insulin receptor inhibitor, BMS-554417. Cancer Res 66: 362–371

    Article  CAS  PubMed  Google Scholar 

  49. Goetsch L et al. (2005) A recombinant humanized anti-insulin-like growth factor receptor type I antibody (h7C10) enhances the antitumor activity of vinorelbine and anti-epidermal growth factor receptor therapy against human cancer xenografts. Int J Cancer 113: 316–328

    Article  CAS  PubMed  Google Scholar 

  50. Cohen BD et al. (2005) Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res 11: 2063–2073

    Article  CAS  PubMed  Google Scholar 

  51. Dunn SE et al. (1997) Insulin-like growth factor 1 (IGF-1) alters drug sensitivity of HBL100 human breast cancer cells by inhibition of apoptosis induced by diverse anticancer drugs. Cancer Res 57: 2687–2693

    CAS  PubMed  Google Scholar 

  52. Macaulay VM et al. (2001) Downregulation of the type 1 insulin-like growth factor receptor in mouse melanoma cells is associated with enhanced radiosensitivity and impaired activation of Atm kinase. Oncogene 20: 4029–4040

    Article  CAS  PubMed  Google Scholar 

  53. Peretz S et al. (2001) ATM-dependent expression of the insulin-like growth factor-I receptor in a pathway regulating radiation response. Proc Natl Acad Sci USA 98: 1676–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shahrabani-Gargir L et al. (2004) Ataxia-telangiectasia mutated gene controls insulin-like growth factor I receptor gene expression in a deoxyribonucleic acid damage response pathway via mechanisms involving zinc-finger transcription factors Sp1 and WT1. Endocrinology 145: 5679–5687

    Article  CAS  PubMed  Google Scholar 

  55. Turner BC et al. (1997) Insulin-like growth factor-I receptor overexpression mediates cellular radioresistance and local breast cancer recurrence after lumpectomy and radiation. Cancer Res 57: 3079–3083

    CAS  PubMed  Google Scholar 

  56. Min Y et al. (2005) Insulin-like growth factor I receptor blockade enhances chemotherapy and radiation responses and inhibits tumour growth in human gastric cancer xenografts. Gut 54: 591–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wen B et al. (2001) Tyrphostin AG 1024 modulates radiosensitivity in human breast cancer cells. Br J Cancer 85: 2017–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Perer ES et al. (2000) Insulin-like growth factor I receptor antagonism augments response to chemoradiation therapy in colon cancer cells. J Surg Res 94: 1–5

    Article  CAS  PubMed  Google Scholar 

  59. Cosaceanu D et al. (2005) Modulation of response to radiation of human lung cancer cells following insulin-like growth factor 1 receptor inactivation. Cancer Lett 222: 173–181

    Article  CAS  PubMed  Google Scholar 

  60. Deutsch E et al. (2004) Tyrosine kinase inhibitor AG1024 exerts antileukaemic effects on STI571-resistant Bcr-Abl expressing cells and decreases AKT phosphorylation. Br J Cancer 91: 1735–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. She QB et al. (2003) Resistance to gefitinib in PTEN-null HER-overexpressing tumor cells can be overcome through restoration of PTEN function or pharmacologic modulation of constitutive phosphatidylinositol 3′kinase/Akt pathway signaling. Clin Cancer Res 9: 4340–4346

    CAS  PubMed  Google Scholar 

  62. Engelman JA et al. (2005) ErbB-3 mediates phosphoinositide 3-kinase activity in gefitinib-sensitive non-small cell lung cancer cell lines. Proc Natl Acad Sci USA 102: 3788–3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Paez JG et al. (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304: 1497–1500

    Article  CAS  PubMed  Google Scholar 

  64. Pao W et al. (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 101: 13306–13311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lynch TJ et al. (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350: 2129–2139

    Article  CAS  PubMed  Google Scholar 

  66. Mellinghoff IK et al. (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353: 2012–2024

    Article  CAS  PubMed  Google Scholar 

  67. Chakravarti A et al. (2002) Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res 62: 200–207

    CAS  PubMed  Google Scholar 

  68. Jones HE et al. (2004) Insulin-like growth factor-I receptor signalling and acquired resistance to gefitinib (ZD1839; Iressa) in human breast and prostate cancer cells. Endocr Relat Cancer 11: 793–814

    Article  CAS  PubMed  Google Scholar 

  69. Kobayashi S et al. (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352: 786–792

    Article  CAS  PubMed  Google Scholar 

  70. Kobayashi S et al. (2005) An alternative inhibitor overcomes resistance caused by a mutation of the epidermal growth factor receptor. Cancer Res 65: 7096–7101

    Article  CAS  PubMed  Google Scholar 

  71. Camirand A et al. (2005) Inhibition of insulin-like growth factor-1 receptor signaling enhances growth-inhibitory and proapoptotic effects of gefitinib (Iressa) in human breast cancer cells. Breast Cancer Res 7: R570–R579

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Lu D et al. (2004) Simultaneous blockade of both the epidermal growth factor receptor and the insulin-like growth factor receptor signaling pathways in cancer cells with a fully human recombinant bispecific antibody. J Biol Chem 279: 2856–2865

    Article  CAS  PubMed  Google Scholar 

  73. Lu D et al. (2005) A fully human recombinant IgG-like bispecific antibody to both the epidermal growth factor receptor and the insulin-like growth factor receptor for enhanced antitumor activity. J Biol Chem 280: 19665–19672

    Article  CAS  PubMed  Google Scholar 

  74. Lu Y et al. (2001) Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 93: 1852–1857

    Article  CAS  PubMed  Google Scholar 

  75. Albanell J and Baselga J (2001) Unraveling resistance to trastuzumab (Herceptin): insulin-like growth factor-I receptor, a new suspect. J Natl Cancer Inst 93: 1830–1832

    Article  CAS  PubMed  Google Scholar 

  76. Lu Y et al. (2004) Molecular mechanisms underlying IGF-I-induced attenuation of the growth-inhibitory activity of trastuzumab (Herceptin) on SKBR3 breast cancer cells. Int J Cancer 108: 334–341

    Article  CAS  PubMed  Google Scholar 

  77. Camirand A et al. (2002) Co-targeting HER2/ErbB2 and insulin-like growth factor-1 receptors causes synergistic inhibition of growth in HER2-overexpressing breast cancer cells. Med Sci Monit 8: BR521–BR526

    CAS  PubMed  Google Scholar 

  78. Nahta R et al. (2005) Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 65: 11118–11128

    Article  CAS  PubMed  Google Scholar 

  79. Digiovanna, MP and Chakraborty A (2006) Combinations of HER2, estrogen receptor (ER) and IGF-I receptor (IGF1R) inhibitors induce apoptosis in breast cancer cells: dramatic effects of HER2 inhibitors on non-overexpressing cells [abstract]. 2006 AACR annual meeting

  80. Mitsiades CS and Mitsiades N (2005) Treatment of hematologic malignancies and solid tumors by inhibiting IGF receptor signaling. Expert Rev Anticancer Ther 5: 487–499

    Article  CAS  PubMed  Google Scholar 

  81. Menu E et al. (2006) Inhibiting the IGF-1 receptor tyrosine kinase with the cyclolignan PPP: an in vitro and in vivo study in the 5T33MM mouse model. Blood 107: 655–660

    Article  CAS  PubMed  Google Scholar 

  82. Martins AS et al. (2006) Insulin-like growth factor I receptor pathway inhibition by ADW742, alone or in combination with imatinib, doxorubicin, or vincristine, is a novel therapeutic approach in Ewing tumor. Clin Cancer Res 12: 3532–3540

    Article  CAS  PubMed  Google Scholar 

  83. Haruta T et al. (2000) A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol 14: 783–794

    Article  CAS  PubMed  Google Scholar 

  84. Shi Y et al. (2005) Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 4: 1533–1540

    Article  CAS  PubMed  Google Scholar 

  85. O'Reilly KE et al. (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66: 1500–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. LeRoith D and Helman L (2004) The new kid on the block(ade) of the IGF-1 receptor. Cancer Cell 5: 201–202

    Article  CAS  PubMed  Google Scholar 

  87. Shimizu C et al. (2004) Expression of insulin-like growth factor 1 receptor in primary breast cancer: immunohistochemical analysis. Hum Pathol 35: 1537–1542

    Article  CAS  PubMed  Google Scholar 

  88. Yu H et al. (2001) Polymorphic CA repeats in the IGF-I gene and breast cancer. Breast Cancer Res Treat 70: 117–122

    Article  CAS  PubMed  Google Scholar 

  89. Wagner K et al. (2005) Polymorphisms in the IGF-1 and IGFBP 3 promoter and the risk of breast cancer. Breast Cancer Res Treat 92: 133–140

    Article  CAS  PubMed  Google Scholar 

  90. dos Santos Silva I et al. (2006) The insulin-like growth factor system and mammographic features in premenopausal and postmenopausal women. Cancer Epidemiol Biomarkers Prev 15: 449–455

    Article  CAS  PubMed  Google Scholar 

  91. Guo YS et al. (1995) Insulin-like growth factor-II expression in carcinoma in colon cell lines: implications for autocrine actions. J Am Coll Surg 181: 145–154

    CAS  PubMed  Google Scholar 

  92. Morimoto LM et al. (2005) Insulin-like growth factor polymorphisms and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 14: 1204–1211

    Article  CAS  PubMed  Google Scholar 

  93. Zecevic M et al. (2006) IGF1 gene polymorphism and risk for hereditary nonpolyposis colorectal cancer. J Natl Cancer Inst 98: 139–143

    Article  CAS  PubMed  Google Scholar 

  94. Moon JW et al. (2006) Promoter -202 A/C polymorphism of insulin-like growth factor binding protein-3 gene and non-small cell lung cancer risk. Int J Cancer 118: 353–356

    Article  CAS  PubMed  Google Scholar 

  95. Jiang Y et al. (2004) A high expression level of insulin-like growth factor I receptor is associated with increased expression of transcription factor Sp1 and regional lymph node metastasis of human gastric cancer. Clin Exp Metastasis 21: 755–764

    Article  CAS  PubMed  Google Scholar 

  96. Savage SA et al. (2005) Polymorphisms in genes of the insulin-like growth factor family are associated with osteogenic sarcoma [abstract]. 2005 AACR annual meeting

  97. Abe S et al. (2006) Increased expression of insulin-like growth factor I is associated with Ara-C resistance in leukemia. Tohoku J Exp Med 209: 217–228

    Article  CAS  PubMed  Google Scholar 

  98. Fottner C et al. (2006) Overexpression of the insulin-like growth factor I receptor in human pheochromocytomas. J Mol Endocrinol 36: 279–287

    Article  CAS  PubMed  Google Scholar 

  99. Hopfner M et al. (2006) The insulin-like growth factor receptor 1 is a promising target for novel treatment approaches in neuroendocrine gastrointestinal tumours. Endocr Relat Cancer 13: 135–149

    Article  PubMed  CAS  Google Scholar 

  100. Warshamana-Greene GS et al. (2005) The insulin-like growth factor-I receptor kinase inhibitor, NVP-ADW742, sensitizes small cell lung cancer cell lines to the effects of chemotherapy. Clin Cancer Res 11: 1563–1571

    Article  CAS  PubMed  Google Scholar 

  101. Scotlandi K et al. (2005) Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res 65: 3868–3876

    Article  CAS  PubMed  Google Scholar 

  102. Wittman M et al. (2005) Discovery of a (1H-benzoimidazol-2-yl)-1H-pyridin-2-one (BMS-536924) inhibitor of insulin-like growth factor I receptor kinase with in vivo antitumor activity. J Med Chem 48: 5639–5643

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Lorna Saint Ange for her assistance in editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Deutsch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tao, Y., Pinzi, V., Bourhis, J. et al. Mechanisms of Disease: signaling of the insulin-like growth factor 1 receptor pathway—therapeutic perspectives in cancer. Nat Rev Clin Oncol 4, 591–602 (2007). https://doi.org/10.1038/ncponc0934

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc0934

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing