Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bisphosphonates and osteomyelitis of the jaw: a pathogenic puzzle

Abstract

The maxillary and mandibular bones undergo high-turnover remodeling to maintain mechanical competence. Common dental or periodontal diseases can increase local bone turnover. Bisphosphonates (BPs) accumulate almost exclusively in skeletal sites that have active bone remodeling. The maxillary and mandibular bones are preferential sites for accumulation of BPs, which become buried under new layers of bone and remain biologically inactive for a long time. Surgical odontostomatological procedures create open bony wounds that heal quickly and without infection, as a result of activation of osteoclasts and subsequently osteoblasts. Once BPs are removed from the bone via activation of osteoclasts after a tooth extraction or a periodontal procedure, they induce osteoclast apoptosis. This inhibition of osteoclast bone resorption impairs bone wound healing because of decreased production of cytokines derived from the bone matrix, and the bone is exposed to the risk of osteomyelitis and necrosis. The pathogenic relationship between BPs and osteonecrosis of the jaw is unclear, but there is evidence to indicate an association between high-dose BP treatment and exposure to dental infections or oral surgical procedures. A better knowledge of the interactions between BPs and jaw and maxillary bone biology will improve clinical and therapeutic approaches.

Key Points

  • Osteonecrosis of the jaw or maxillary bone associated with bisphosphonate (BP) treatment is a relatively rare but severe clinical condition; however, a clear pathogenic relationship between osteonecrosis of the jaw and BPs has not been established

  • The jaw and the maxillary bone are characterized by high bone turnover that is constantly stimulated by mechanical stress, tooth movements or loss, periodontitis, and odontostomatological procedures, which are particularly frequent in cancer patients

  • Treatment with an amino-BP over long time periods causes the drug to accumulate in an inactive state within the alveolar bone

  • Physical trauma or infection activates local bone remodeling, releasing pharmacological doses of BPs that inhibit the osteoclast-driven bone healing

  • The nonhealing wound exposes the alveolar bone to the risk of infection by commensal flora and the wound can progress to necrotic osteomyelitis; there is no convincing evidence that a direct necrotic effect is mediated through inhibition of angiogenesis

  • The possibility of accumulation of substantial doses of BPs at skeletal sites other than those affected by bone metastases could have implications for the optimization of BP schedules to improve response in patients

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanism of bisphosphonate accumulation in the jaw and a hypothetical pathogenic role in osteonecrosis.
Figure 2: Schematic representation of the interaction between periodontitis, bisphosphonates and alveolar bone.

Similar content being viewed by others

References

  1. Santini D et al. (2003) The antineoplastic role of bisphosphonates: from basic research to clinical evidence. Ann Oncol 14: 1468–1476

    Article  CAS  PubMed  Google Scholar 

  2. Clezardin P et al. (2005) Bisphosphonates and cancer-induced bone disease: beyond their antiresorptive activity. Cancer Res 65: 4971–4974

    Article  CAS  PubMed  Google Scholar 

  3. Ross JR et al. (2003) Systematic review of role of bisphosphonates on skeletal morbidity in metastatic cancer. BMJ 327: 469–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Woo SB et al. (2006) Narrative [corrected] review: bisphosphonates and osteonecrosis of the jaws. Ann Intern Med 144: 753–761

    Article  CAS  PubMed  Google Scholar 

  5. Bamias A et al. (2005) Osteonecrosis of the jaw in cancer after treatment with bisphosphonates: incidence and risk factors. J Clin Oncol 23: 8580–8587

    Article  PubMed  Google Scholar 

  6. Migliorati CA et al. (2005) Bisphosphonate-associated osteonecrosis of mandibular and maxillary bone: an emerging oral complication of supportive cancer therapy. Cancer 104: 83–93

    Article  CAS  PubMed  Google Scholar 

  7. Badros A et al. (2006) Osteonecrosis of the jaw in multiple myeloma patients: clinical features and risk factors. J Clin Oncol 24: 945–952

    Article  CAS  PubMed  Google Scholar 

  8. Mavrokokki T et al. (2007) Nature and frequency of bisphosphonate-associated osteonecrosis of the jaws in Australia. J Oral Maxillofac Surg 65: 415–423

    Article  PubMed  Google Scholar 

  9. Hoff A et al. (2006) Osteonecrosis of the jaw in patients receiving intravenous bisphosphonates therapy [abstract #8528]. J Clin Oncol (Suppl 24): S475

  10. Bonafe-Oliveira L et al. (2003) Ultrastructural and histochemical examination of alveolar bone at the pressure areas of rat molars submitted to continuous orthodontic force. Eur J Oral Sci 111: 410–416

    Article  PubMed  Google Scholar 

  11. Rody WJ Jr et al. (2001) Osteoclast recruitment to sites of compression in orthodontic tooth movement. Am J Orthod Dentofascial Orthop 120: 477–489

    Article  Google Scholar 

  12. Shimizu M et al. (1998) Bone wound healing after maxillary molar extraction in ovariectomized aged rats. J Electron Microsc (Tokyo) 47: 517–526

    Article  CAS  Google Scholar 

  13. Pitaru S et al. (1994) Cellular origins and differentiation control mechanisms during periodontal development and wound healing. J Periodontal Res 29: 81–94

    Article  CAS  PubMed  Google Scholar 

  14. Kobayashi Y et al. (2000) Forced-induced osteoclast apoptosis in vivo is accompanied by elevation in transforming growth factor β and osteoprotegerin expression. J Bone Min Res 15: 1924–1934

    Article  CAS  Google Scholar 

  15. Terai K et al. (1999) Role of osteopontin in bone remodeling caused by mechanical stress. J Bone Miner Res 14: 839–849

    Article  CAS  PubMed  Google Scholar 

  16. Kanzaki H et al. (2002) Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor κB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res 17: 210–220

    Article  CAS  PubMed  Google Scholar 

  17. Fukushima H et al. (2005) Parathyroid-hormone-related protein induces expression of receptor activator of NF-κB ligand in human periodontal ligament cells via a cAMP/protein kinase A-independent pathway. J Dent Res 84: 329–334

    Article  CAS  PubMed  Google Scholar 

  18. Tezal M et al. (2005) Periodontal disease and the incidence of tooth loss in postmenopausal women. J Periodontol 76: 1123–1128

    Article  PubMed  Google Scholar 

  19. [No authors listed] (1996) Position paper: Epidemiology of periodontal diseases. American Academy of Periodontology. J Periodontol 67: 935–945

  20. Crotti T et al. (2003) Receptor activator NF kappa B ligand (RANKL) and osteoprotegerin (OPG) protein expression in periodontitis. J Periodontal Res 38: 380–387

    Article  CAS  PubMed  Google Scholar 

  21. Vernal R et al. (2004) Levels of cytokine receptor activator of nuclear factor kB ligand in gingival crevicular fluid in untreated chronic periodontitis patients. J Periodontol 75: 1586–1591

    Article  CAS  PubMed  Google Scholar 

  22. Müller HP and Ulbrich M (2005) Alveolar bone levels in adults as assessed on panoramic radiographs. (I) Prevalence, extent, and severity of even and angular bone loss. Clin Oral Investig 9: 98–104

    Article  PubMed  Google Scholar 

  23. Jahangari L et al. (1998) Current perspectives in residual ridge remodeling and its clinical implication: a review. J Prosthet Dent 80: 224–237

    Article  Google Scholar 

  24. Coxon FP et al. (2006) Recent advances in understanding the mechanism of action of bisphosphonates. Curr Opin Pharmacol 6: 307–312

    Article  CAS  PubMed  Google Scholar 

  25. Papapoulos SE (2006) Bisphosphonate actions: physical chemistry revisited. Bone 38: 613–616

    Article  PubMed  Google Scholar 

  26. Rogers MJ (2003) New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 9: 2643–2658

    Article  CAS  PubMed  Google Scholar 

  27. Fleisch H (1998) Bisphosphonates: mechanisms of action. Endocr Rev 19: 80–100

    Article  CAS  PubMed  Google Scholar 

  28. Roelofs AJ et al. (2006) Molecular mechanisms of action of bisphosphonates: current status. Clin Cancer Res 12 (Suppl 20): S6222–S6230

    Article  Google Scholar 

  29. Coxon FP et al. (2005) Phosphonocarboxylate inhibitors of Rab geranylgeranyl transferase disrupt the prenylation and membrane localization of Rab proteins in osteoclasts in vitro and in vivo. Bone 37: 349–358

    Article  CAS  PubMed  Google Scholar 

  30. Reid IR et al. (2002) Intravenous zoledronic acid in postmenopausal women with low bone mineral density. N Engl J Med 346: 653–661

    Article  CAS  PubMed  Google Scholar 

  31. Reid IR et al. (2005) Comparison of a single infusion of zoledronic acid with risedronate for Paget's disease. N Engl J Med 353: 898–908

    Article  CAS  PubMed  Google Scholar 

  32. Black D et al. (2006) Effects of continuing or stopping alendronate after 5 years of treatment: the Fracture Intervention Trial Long-Term EXtension (FLEX): a randomized trial. J Am Med Ass 296: 2927–2938

    Article  CAS  Google Scholar 

  33. Watts NB et al. (2007) Fracture risk remains reduced one year after discontinuation of risedronate. Osteoporos Int [doi:10.1007/s00198-007-0460-7]

    Article  PubMed  CAS  Google Scholar 

  34. Landman JO et al. (1995) Skeletal metabolism in patients with osteoporosis after discontinuation of long-term treatment with oral pamidronate. J Clin Endocrinol Metab 80: 3465–3468

    Article  CAS  PubMed  Google Scholar 

  35. Masarachia P et al. (1996) Comparison of the distribution of 3H-alendronate and 3H-etidronate in rat and mouse bones. Bone 19: 281–290

    Article  CAS  PubMed  Google Scholar 

  36. Cremers S et al. (2005) Pharmacokinetics/pharmacodynamics of bisphosphonates: use for optimisation of intermittent therapy for osteoporosis. Clin Pharmacokinet 44: 551–570

    Article  CAS  PubMed  Google Scholar 

  37. Berenson JR et al. (1997) Pharmacokinetics of pamidronate disodium in patients with cancer with normal or impaired renal function. J Clin Pharmacol 37: 285–290

    Article  CAS  PubMed  Google Scholar 

  38. Cremers SC et al. (2003) Relationships between pharmacokinetics and rate of bone turnover after intravenous bisphosphonate (olpadronate) in patients with Paget's disease of bone. J Bone Miner Res 18: 868–875

    Article  CAS  PubMed  Google Scholar 

  39. Cremers SC et al. (2005) Skeletal retention of bisphosphonate (pamidronate) and its relation to the rate of bone resorption in patients with breast cancer and bone metastases. J Bone Miner Res 20: 1543–1547

    Article  CAS  PubMed  Google Scholar 

  40. Altundal H and Guvener O (2004) The effect of alendronate on resorption of the alveolar bone following tooth extraction. Int J Oral Maxillofac Surg 33: 286–293

    Article  CAS  PubMed  Google Scholar 

  41. Weireb M et al. (1994) Istomorphometrical analysis of the effects of the bisphosphonates alendronate on bone loss caused by experimental periodontitis in monkeys. J Periodontal Res 29: 35–40

    Article  Google Scholar 

  42. Rody WJ et al. (2001) Osteoclast recruitment to sites of compression in orthodontic tooth movement. Am J Orthod Denofacial Orthop 120: 477–489

    Article  Google Scholar 

  43. Shell H et al. (2006) Osteoclast activity begins early and increase over the course of bone healing. Bone 38: 547–554

    Article  Google Scholar 

  44. Linkhart TA et al. (1996) Growth factors for bone growth and repair: IGF, TGF-beta, and BMP. Bone 19 (Suppl 1): S1–S12

    Article  Google Scholar 

  45. Cho TJ et al. (2002) Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res 17: 513–520

    Article  CAS  PubMed  Google Scholar 

  46. Lalani Z et al. (2003) Spatial and temporal localization of transforming growth factor-beta1, bone morphogenetic protein–2, and platelet-derived growth factor-A in healing tooth extraction sockets in a rabbit model. J Oral Maxillofac Surg 61: 1061–1072

    Article  PubMed  Google Scholar 

  47. Uematsu S et al. (1997) Increase of transforming growth factor-beta 1 in gingival crevicular fluid during human orthodontic tooth movement. Arch Oral Biol 41: 1091–1095

    Article  Google Scholar 

  48. Götz W et al. (2006) Insulin-like growth factor system components in the periodontium during tooth root resorption and early repair process in the rat. Eur J Oral Sci 114: 318–327

    Article  PubMed  Google Scholar 

  49. Van den Wyngaert T et al. (2006) Bisphosphonates and osteonecrosis of the jaw: cause and effect or a post hoc fallacy? Ann Oncol 17: 1197–1204

    Article  CAS  PubMed  Google Scholar 

  50. Ruggiero S et al. (2006) Practical guidelines for the prevention, diagnosis, and treatment of osteonecrosis of the jaw in patients with cancer. J Oncol Pract 2: 7–14

    Article  PubMed  PubMed Central  Google Scholar 

  51. Bilston LE et al. (2002) Zoledronic acid improves the mechanical properties of normal and healing bone. Clin Biomech (Bristol, Avon) 17: 716–718

    Article  CAS  Google Scholar 

  52. Mashiba T et al. (2001) Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagles. Bone 28: 524–531

    Article  CAS  PubMed  Google Scholar 

  53. Cao Y et al. (2002) Raloxifene, estrogen and alendronate affect the processes of fracture repair differently in ovariectomized rats. J Bone Miner Res 17: 2237–2246

    Article  CAS  PubMed  Google Scholar 

  54. Goodship AE et al. (1994) Use of a bisphosphonate (pamidronate) to modulate fracture repair in ovine bone. Ann Oncol 5 (Suppl 7): S53–S55

    PubMed  Google Scholar 

  55. Hansen T et al. (2006) Osteonecrosis of the jaws in patients treated with bisphosphonates—histomorphologic analysis in comparison with infected osteoradionecrosis. J Oral Pathol Med 35: 155–160

    Article  PubMed  Google Scholar 

  56. Sung EC et al. (2002) Osteonecrosis of the maxilla as a complication to chemotherapy: a case report. Spec Care Dentist 22: 142–146

    Article  PubMed  Google Scholar 

  57. Hino S et al. (2005) Response of diffuse sclerosing osteomyelitis of the mandible to alendronate: follow-up study by 99mTc scintigraphy. Int J Oral Maxillofac Surg 34: 576–578

    Article  CAS  PubMed  Google Scholar 

  58. Ruggiero SL et al. (2004) Osteonecrosis of the jaws associated with the use of bisphosphonates: a review of 63 cases. J Oral Maxillofac Surg 62: 527–534

    Article  PubMed  Google Scholar 

  59. Hellstein JW and Marek CL (2005) Bisphosphonate osteochemonecrosis (bis-phossy jaw): is this phossy jaw of the 21st century? J Oral Maxillofac Surg 63: 682–689

    Article  PubMed  Google Scholar 

  60. Assael LA (2004) New foundations in understanding osteonecrosis of the jaws. J Oral Maxillofac Surg 62: 125–126

    Article  PubMed  Google Scholar 

  61. Robinson JN et al. (2004) Efficacy of pamidronate in complex regional pain syndrome type I. Pain Med 5: 276–280

    Article  PubMed  Google Scholar 

  62. Wood J et al. (2002) Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J Pharmacol Exp Ther 302: 1055–1061

    Article  CAS  PubMed  Google Scholar 

  63. Vincenzi B et al. (2005) Zoledronic acid-related angiogenesis modifications and survival in advanced breast cancer patients. J Interferon Cytokine Res 25: 144–151

    Article  CAS  PubMed  Google Scholar 

  64. Fournier P et al. (2002) Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res 62: 6538–6544

    CAS  PubMed  Google Scholar 

  65. Santini D et al. (2002) Pamidronate induces modifications of circulating angiogenetic factors in cancer patients. Clin Cancer Res 8: 1080–1084

    CAS  PubMed  Google Scholar 

  66. Deckers MM et al. (2002) Dissociation of angiogenesis and osteoclastogenesis during endochondral bone formation in neonatal mice. J Bone Miner Res 17: 998–1007

    Article  PubMed  Google Scholar 

  67. Heimdahl A (1999) Prevention and management of oral infections in cancer patient. Support Care Cancer 7: 224–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sonis ST (1998) Mucositis as a biological process: a new hypothesis for the development of chemotherapy-induced stomatotoxicity. Oral Oncol 34: 39–43

    Article  CAS  PubMed  Google Scholar 

  69. Raber-Durlacher JE et al. (2002) Periodontal infection in cancer patients treated with high-dose chemotherapy. Support Care Cancer 10: 466–473

    Article  PubMed  Google Scholar 

  70. Tiranathanagul S et al. (2004) Actinobacillus actinomycetemcomitans lipopolysaccharide activates matrix metalloproteinase-2 and increases receptor activator of nuclear factor-κB ligand expression in human periodontal ligament cells. J Periodontol 75: 1647–1654

    Article  CAS  PubMed  Google Scholar 

  71. Narani N and Epstein JB (2001) Classifications of oral lesions in HIV infection. J Clin Periodontol 28: 137–145

    Article  CAS  PubMed  Google Scholar 

  72. Dunford JE et al. (2001) Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther 296: 235–242

    CAS  PubMed  Google Scholar 

  73. Green JR et al. (1994) Preclinical pharmacology of CGP 42'446, a new, potent, heterocyclic bisphosphonate compound. J Bone Miner Res 9: 745–751

    Article  CAS  PubMed  Google Scholar 

  74. Rosen CJ et al. (2005) Treatment with once-weekly alendronate 70 mg compared with once-weekly risedronate 35 mg in women with postmenopausal osteoporosis: a randomized double blind study. J Bone Miner Res 20: 141–151

    Article  CAS  PubMed  Google Scholar 

  75. Barret J et al. (2004) Ibandronate: a clinical pharmacological and pharmacokinetic update. J Clin Pharmacol 44: 951–965

    Article  CAS  Google Scholar 

  76. Gertz BJ et al. (1995) Studies of the oral bioavailability of alendronate. Clin Pharmacol Ther 58: 288–298

    Article  CAS  PubMed  Google Scholar 

  77. Coleman RE (2005) Bisphosphonates in breast cancer. Ann Oncol 16: 687–695

    Article  CAS  PubMed  Google Scholar 

  78. Major PP and Cook R (2002) Efficacy of bisphosphonates in the management of skeletal complications of bone metastases and selection of clinical endpoints. Am J Clin Oncol (Suppl 1): S10–S18

    Article  PubMed  Google Scholar 

  79. Body JJ et al. (2004) Oral ibandronate reduces the risk of skeletal complications in breast cancer patients with metastatic bone disease: result from two randomised, placebo-controlled phase III studies. Br J Cancer 90: 1133–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dimopoulos MA et al. (2006) Osteonecrosis of the jaw in patients with multiple myeloma treated with bisphosphonates: evidence of increased risk after treatment with zoledronic acid. Haematologica 9: 968–971

    Google Scholar 

  81. Van den Wyngaer T et al. (2006) Bisphosphonates and osteonecrosis of the jaw: cause and effect or a post hoc fallacy? Ann Oncol 17: 1197–1204

    Article  Google Scholar 

  82. Bilezikian JP (2006) Osteonecrosis of the jaw: do bisphosphonates pose a risk? N Engl J Med 355: 2278–2281

    Article  CAS  PubMed  Google Scholar 

  83. Christiansen C et al. (2003) Comparison of risedronate and alendronate pharmacokinetics at clinical doses [abstract #P163]. Osteoporosis Int 14 (Suppl 7): S38

    Google Scholar 

  84. Black DM et al. (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Eng J Med 356: 1809–1822

    Article  CAS  Google Scholar 

  85. Brown JE et al. (2003) Bone resorption predicts for skeletal complications in metastatic bone disease. Br J Cancer 89: 2031–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Coleman RE et al. (2005) Predictive value of bone resorption and formation markers in cancer patients with bone metastases receiving the bisphosphonate zoledronic acid. J Clin Oncol 23: 4925–4935

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Santini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertoldo, F., Santini, D. & Lo Cascio, V. Bisphosphonates and osteomyelitis of the jaw: a pathogenic puzzle. Nat Rev Clin Oncol 4, 711–721 (2007). https://doi.org/10.1038/ncponc1000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc1000

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing