Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cytokine networks—towards new therapies for rheumatoid arthritis

Abstract

Success achieved so far in the blockade of tumor necrosis factor and interleukin (IL)-1 in rheumatoid arthritis exemplifies the feasibility and potential therapeutic application of antagonizing cytokine signaling. Despite these advances, there remains a considerable unmet clinical need in this field. A number of preclinical development programs are ongoing to target a variety of cytokines that are central to immune regulation and tissue-matrix destruction in rheumatoid arthritis. Evidence indicates that IL-6 antagonists might represents a useful approach and preliminary data similarly identify IL-15 as an intriguing target. Numerous additional cytokines are under investigation at the preclinical stage, including IL-12–IL-23, IL-17 and IL-18. As therapeutic goals move from disease control towards remission induction, development of the capacity for cytokine targeting to modify the underlying immune dysregulation remains a major priority.

Key Points

  • Tumor necrosis factor blockade is effective in improving clinical signs and symptoms in rheumatoid arthritis (RA) patients and can ameliorate radiographic damage

  • Patient subsets that do not respond to tumor necrosis factor blockade, or respond only partially, represent an unmet clinical need

  • Numerous cytokine activities have now been described in RA synovia and studies in mouse arthritis models provide rational for their neutralization in clinical trials

  • Interleukin (IL)-6 and IL-15 are currently being tested in clinical studies in human RA

  • Preclinical evidence suggests that IL-12–IL-23, IL-18 and IL-17 might also offer therapeutic potential

  • Novel cytokine targets, including high mobility group box 1 protein and adipokines, might offer future therapeutic utility

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytokines regulate various processes necessary for development of inflammatory synovitis in rheumatoid arthritis.
Figure 2: Cytokines mediate feedback between cells of the immune cells and host tissue cells.
Figure 3: Cytokine signaling in the synovial membrane.

Similar content being viewed by others

References

  1. Feldmann M and Maini RN (2001) Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 19: 163–196

    Article  CAS  PubMed  Google Scholar 

  2. van Jaarsveld CH et al. (1999) The prognostic value of the antiperinuclear factor, anti-citrullinated peptide antibodies and rheumatoid factor in early rheumatoid arthritis. Clin Exp Rheumatol 17: 689–697

    CAS  PubMed  Google Scholar 

  3. Brennan FM et al. (1989) Inhibitory effect of TNF alpha antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet 2: 244–247

    Article  CAS  PubMed  Google Scholar 

  4. Klareskog L et al. (2004) Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomized controlled trial. Lancet 363: 675–681

    Article  CAS  PubMed  Google Scholar 

  5. Nishimoto N et al. (2000) Anti-interleukin 6 receptor antibody treatment in rheumatic disease. Ann Rheum Dis 59 (Suppl 1): i21–i27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Alonzi T et al. (1998) Interleukin 6 is required for the development of collagen-induced arthritis. J Exp Med 187: 461–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Takagi N et al. (1998) Blockage of interleukin-6 receptor ameliorates joint disease in murine collagen-induced arthritis. Arthritis Rheum 41: 2117–2121

    Article  CAS  PubMed  Google Scholar 

  8. Choy EH et al. (2002) Therapeutic benefit of blocking interleukin-6 activity with an anti-interleukin-6 receptor monoclonal antibody in rheumatoid arthritis: a randomized, double-blind, placebo-controlled, dose-escalation trial. Arthritis Rheum 46: 3143–3150

    Article  CAS  PubMed  Google Scholar 

  9. Nakahara H et al. (2003) Anti-interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum 48: 1521–1529

    Article  CAS  PubMed  Google Scholar 

  10. Nishimoto N et al. (2004) Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum 50: 1761–1769

    Article  CAS  PubMed  Google Scholar 

  11. Yokota S et al. (2005) Therapeutic efficacy of humanized recombinant anti-interleukin-6 receptor antibody in children with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 52: 818–825

    Article  CAS  PubMed  Google Scholar 

  12. Pelletier JP and Martel-Pelletier J (2003) Oncostatin M: foe or friend? Arthritis Rheum 48: 3301–3303

    Article  PubMed  Google Scholar 

  13. Hui W et al. (2003) Oncostatin M in combination with tumor necrosis factor alpha induces cartilage damage and matrix metalloproteinase expression in vitro and in vivo. Arthritis Rheum 48: 3404–3418

    Article  CAS  PubMed  Google Scholar 

  14. Hui W et al. (2005) A model of inflammatory arthritis highlights a role for oncostatin M in pro-inflammatory cytokine-induced bone destruction via RANK/RANKL. Arthritis Res Ther 7: R57–R64

    Article  PubMed  CAS  Google Scholar 

  15. Waldmann TA and Tagaya Y (1999) The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu Rev Immunol 17: 19–49

    Article  CAS  PubMed  Google Scholar 

  16. Budagian V et al. (2004) Reverse signaling through membrane-bound interleukin-15. J Biol Chem 279: 42192–42201

    Article  CAS  PubMed  Google Scholar 

  17. Dubois S et al. (2002) IL-15Rα recycles and presents IL-15 in trans to neighboring cells. Immunity 17: 537–547

    Article  CAS  PubMed  Google Scholar 

  18. McInnes IB et al. (2003) New strategies to control inflammatory synovitis: interleukin 15 and beyond. Ann Rheum Dis 62: 51–54

    Article  Google Scholar 

  19. McInnes IB et al. (1997) Interleukin-15 mediates T cell-dependent regulation of tumor necrosis factor-α production in rheumatoid arthritis. Nat Med 3: 189–195

    Article  CAS  PubMed  Google Scholar 

  20. Ruchatz H et al. (1998) Soluble IL-15 receptor alpha-chain administration prevents murine collagen-induced arthritis: a role for IL-15 in development of antigen-induced immunopathology. J Immunol 160: 5654–5660

    CAS  PubMed  Google Scholar 

  21. Ferrari-Lacraz S et al. (2004) Targeting IL-15 receptor-bearing cells with an antagonist mutant IL-15/Fc protein prevents disease development and progression in murine collagen-induced arthritis. J Immunol 173: 5818–5826

    Article  CAS  PubMed  Google Scholar 

  22. Baslund B et al. (2005) Targeting interleukin-15 in patients with rheumatoid arthritis: a proof-of-concept study. Arthritis Rheum 52: 2686–2692

    Article  CAS  PubMed  Google Scholar 

  23. McInnes IB et al. (2004) Safety and efficacy of a human monoclonal antibody to IL-15 (AMG 714) in patients with rheumatoid arthritis (RA): results from a multicenter, randomized, double-blind, placebo-controlled trial [abstract]. Arthritis Rheum 50 (Suppl): a241

    Google Scholar 

  24. Zheng XX et al. (2003) Favorably tipping the balance between cytopathic and regulatory T cells to create transplantation tolerance. Immunity 19: 503–514

    Article  CAS  PubMed  Google Scholar 

  25. Schulze-Koops H and Kalden JR (2001) The balance of Th1/Th2 cytokines in rheumatoid arthritis. Best Pract Res Clin Rheumatol 15: 677–691

    Article  CAS  PubMed  Google Scholar 

  26. Veys EM et al. (1997) A randomized, double-blind study comparing twenty-four-week treatment with recombinant interferon-gamma versus placebo in the treatment of rheumatoid arthritis. Arthritis Rheum 40: 62–68

    Article  CAS  PubMed  Google Scholar 

  27. Sigidin YA et al. (2001) Randomized, double-blind trial of anti-interferon-gamma antibodies in rheumatoid arthritis. Scand J Rheumatol 30: 203–207

    Article  CAS  PubMed  Google Scholar 

  28. Kolls JK and Linden A (2004) Interleukin-17 family members and inflammation. Immunity 21: 467–476

    Article  CAS  PubMed  Google Scholar 

  29. Chabaud M et al. (1999) Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum 42: 963–970

    Article  CAS  PubMed  Google Scholar 

  30. Lubberts E et al. (2005) The role of T cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res Ther 7: 29–37

    Article  CAS  PubMed  Google Scholar 

  31. Gracie JA et al. (2003) Interleukin-18. J Leukoc Biol 73: 213–224

    Article  CAS  PubMed  Google Scholar 

  32. Gracie JA et al. (1999) A proinflammatory role for IL-18 in rheumatoid arthritis. J Clin Invest 104: 1393–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rooney T et al. (2004) Synovial tissue interleukin-18 expression and the response to treatment in patients with inflammatory arthritis. Ann Rheum Dis 63: 1393–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Joosten LA et al. (2004) Interleukin-18 promotes joint inflammation and induces interleukin-1-driven cartilage destruction. Am J Pathol 165: 959–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wei XQ et al. (2001) Reduced incidence and severity of collagen-induced arthritis in mice lacking IL-18. J Immunol 166: 517–521

    Article  CAS  PubMed  Google Scholar 

  36. Plater-Zyberk C et al. (2001) Therapeutic effect of neutralizing endogenous IL-18 activity in the collagen-induced model of arthritis. J Clin Invest 108: 1825–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Smeets RL et al. (2003) Adenoviral delivery of IL-18 binding protein C ameliorates collagen-induced arthritis in mice. Gene Ther 10: 1004–1011

    Article  CAS  PubMed  Google Scholar 

  38. Morita Y et al. (1998) Expression of interleukin-12 in synovial tissue from patients with rheumatoid arthritis. Arthritis Rheum 41: 306–314

    Article  CAS  PubMed  Google Scholar 

  39. Hess H et al. High doses of interleukin-12 inhibit the development of joint disease in DBA/1 mice immunized with type II collagen in complete Freund's adjuvant. Eur J Immunol 26: 187–191

  40. Leung BP et al. (2000) Combined effects of IL-12 and IL-18 on the induction of collagen-induced arthritis. J Immunol 164: 6495–6502

    Article  CAS  PubMed  Google Scholar 

  41. Malfait AM et al. (1998) Blockade of IL-12 during the induction of collagen-induced arthritis (CIA) markedly attenuates the severity of the arthritis. Clin Exp Immunol 111: 377–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Joosten LA et al. (1997) Dual role of IL-12 in early and late stages of murine collagen type II arthritis. J Immunol 159: 4094–4102

    CAS  PubMed  Google Scholar 

  43. Butler DM et al. (1999) Anti-IL-12 and anti-TNF antibodies synergistically suppress the progression of murine collagen-induced arthritis. Eur J Immunol 29: 2205–2212

    Article  CAS  PubMed  Google Scholar 

  44. Joosten LA et al. (2002) Local interleukin-12 gene transfer promotes conversion of an acute arthritis to a chronic destructive arthritis. Arthritis Rheum 46: 1379–1389

    Article  CAS  PubMed  Google Scholar 

  45. Trinchieri G et al. (2003) The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity 19: 641–644

    Article  CAS  PubMed  Google Scholar 

  46. Murphy CA et al. (2003) Divergent pro- and anti-inflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med 198: 1951–1957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goldberg R et al. (2004) Suppression of ongoing adjuvant-induced arthritis by neutralizing the function of the p28 subunit of IL-27. J Immunol 173: 1171–1178

    Article  CAS  PubMed  Google Scholar 

  48. Kauffman CL et al. (2004) A phase I study evaluating the safety, pharmacokinetics, and clinical response of a human IL-12 p40 antibody in subjects with plaque psoriasis. J Invest Dermatol 123: 1037–1044

    Article  CAS  PubMed  Google Scholar 

  49. Sattar N et al. (2003) Explaining how “high-grade” systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation 108: 2957–2963

    Article  PubMed  Google Scholar 

  50. Schaffler A et al. (2003) Adipocytokines in synovial fluid. JAMA 290: 1709–1710

    Article  PubMed  Google Scholar 

  51. Bokarewa M et al. (2005) Resistin, an adipokine with potent proinflammatory properties. J Immunol 174: 5789–5795

    Article  CAS  PubMed  Google Scholar 

  52. Kokkola R et al. (2002) High mobility group box chromosomal protein 1: a novel proinflammatory mediator in synovitis. Arthritis Rheum 46: 2598–2603

    Article  CAS  PubMed  Google Scholar 

  53. Kokkola R et al. (2003) Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity. Arthritis Rheum 48: 2052–2058

    Article  CAS  PubMed  Google Scholar 

  54. Bekker PJ et al. (2004) A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Miner Res 19: 1059–1066

    Article  CAS  PubMed  Google Scholar 

  55. Tan SM et al. (2003) Local production of B lymphocyte stimulator protein and APRIL in arthritic joints of patients with inflammatory arthritis. Arthritis Rheum 48: 982–992

    Article  CAS  PubMed  Google Scholar 

  56. Dinarello CA (2005) Blocking IL-1 in systemic inflammation. J Exp Med. 201: 1355–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cohen SB (2004) The use of anakinra, an interleukin-1 receptor antagonist, in the treatment of rheumatoid arthritis. Rheum Dis Clin North Am 30: 365–380

    Article  PubMed  Google Scholar 

  58. Choe JY et al. (2003) Interleukin 1 receptor dependence of serum transferred arthritis can be circumvented by toll-like receptor 4 signaling. J Exp Med 197: 537–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the Arthritis Research Campaign and The Wellcome Trust (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain B McInnes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McInnes, I., Liew, F. Cytokine networks—towards new therapies for rheumatoid arthritis. Nat Rev Rheumatol 1, 31–39 (2005). https://doi.org/10.1038/ncprheum0020

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncprheum0020

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing