Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Creation of genomic methylation patterns

There are two biological properties of genomic methylation patterns that can be regarded as established. First, methylation of 5′-CpG-3′ dinucleotides within promoters represses transcription, often to undetectable levels. Second, in most cases methylation patterns are subject to clonal inheritance. These properties suit methylation patterns for a number of biological roles, although none of the current hypotheses can be regarded as proved or disproved. One hypothesis suggests that the activity of parasitic sequence elements is repressed by selective methylation. Features of invasive sequences that might allow their identification and inactivation are discussed in terms of the genome defense hypothesis. Identification of the cues that direct de novo methylation may reveal the biological role (or roles) of genomic methylation patterns.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Reinisch, K.M., Chen, L., Verdine, G.L. & Lipscomb, W.N. (1995) The crystal structure of Haelll methyltransferase covalently complexed to DNA: an extrahelical cytosine and rearranged base pairing. Cell 82, 143–153 (1995).

    Article  CAS  Google Scholar 

  2. Pfeifer, G., Steigerwald, S., Hansen, R.S., Gartler, S.M. & Riggs, A.D. (1990) Polymerase-chain reaction aided genomic sequencing of an X chromosome linked CpG island: methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state stability. Proc. Natl. Acad. Sci. USA 87, 8252–8256 (1990).

    Article  CAS  Google Scholar 

  3. Iguchi-Ariga, S.M.M. & Schaffner, W. CpG methylation of the cAMP responsive enhancer/promoter TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 3, 612–619 (1989).

    Article  CAS  Google Scholar 

  4. Bestor, T.H. & Coxon, A. The pros and cons of cytosine methylation. Curr. Biol. 3, 384–386 (1993).

    Article  CAS  Google Scholar 

  5. Yoshiura, K. et al. Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc. Natl. Acad. Sci. USA 92, 7416–7419 (1995).

    Article  CAS  Google Scholar 

  6. Herman, J. et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl. Acad. Sci. USA 91, 9700–9704 (1994).

    Article  CAS  Google Scholar 

  7. Bestor, T.H. DNA methylation: evolution of a bacterial immune function into a regulator of genome structure and activity in higher eukaryotes. Phil. Trans. Royal Soc. Lond. B 326, 179–187 (1990).

    Article  Google Scholar 

  8. Li, E., Bestor, T.H. & Jaenisch, R. Targeted mutation of mouse DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    Article  CAS  Google Scholar 

  9. Li, E., Beard, C., Forster, A.C., Bestor, T.H. & Jaenisch, R. DNA methylation, genomic imprinting, and mammalian development. Cold Spring Harb. Symp. Quant. Biol. LVIII, 297–305 (1993).

    Article  Google Scholar 

  10. Holliday, R. & Pugh, J.E. DNA modification mechanisms and gene activity during development. Science 187, 226–232 (1975).

    Article  CAS  Google Scholar 

  11. Riggs, A.D., X-inactivation, differentiation, and DNA methylation. Cytogenet. Cell Genet. 14, 9–11 (1975).

    Article  CAS  Google Scholar 

  12. Bestor, T.H. & Verdine, G.L. DNA methyltransferases. Curr. Opin. Cell Biol. 6, 380–389 (1994).

    Article  CAS  Google Scholar 

  13. Bestor, T.H. The biochemical basis of allele-specific gene expression in genomic imprinting and X inactivation. in Genomic imprinting: Causes and consequences, (eds Ohlsson, R., Hall, K. & Ritzen, M.) (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  14. Jaenisch, R., Schnieke, A. & Harbers, K. Treatment of mice with 5-azacytidine efficiently activates silent retroviral genomes in different tissues. Proc. Natl. Acad. Sci. USA 82, 1451–1455 (1985).

    Article  CAS  Google Scholar 

  15. Ashburner, M. Drosophila: A Laboratory Handbook. 303 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1992).

    Google Scholar 

  16. Mummaneni, P., Bishop, P. & Turker, M. A cis-acting element accounts for a conserved methylation pattern upstream of the mouse adenine phosphoribosyltransferase gene. J. Biol. Chem. 268, 552–558 (1993).

    CAS  PubMed  Google Scholar 

  17. Macleod, D., Charlton, J., Mullins, J. & Bird, A. Sp1 binding sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 8, 2282–2292 (1994).

    Article  CAS  Google Scholar 

  18. Brandeis, M. et al. Sp1 elements protect a CpG island from de novo methylation. Nature 371, 435–438 (1994).

    Article  CAS  Google Scholar 

  19. Craig, N.L. Unity in transposition reactions. Science 270, 253–255 (1995).

    Article  CAS  Google Scholar 

  20. Charlesworth, B., Sniegowski, P. & Stephan, W. The evolutionary dynamics of repetitive DMA in eukaryotes. Nature 371, 215–220 (1994).

    Article  CAS  Google Scholar 

  21. Bestor, T.H. Supercoiling-dependent sequence specificity of mammalian DMA methyltransferase. Nucl. Acids Res. 15, 3835–3843 (1987).

    Article  CAS  Google Scholar 

  22. Chen, X. et al. Hairpins are formed by the single DNA strands of the fragile X triplet repeats: structure and biological implications. Proc. Natl. Acad. Sci. USA 92, 5199–5203 (1995).

    Article  CAS  Google Scholar 

  23. Jentsch, F. & Kemper, B. Endonuclease VII resolves Y-junctions in branched DNA in vitro . EMBO J. 5, 181–190 (1986).

    Article  Google Scholar 

  24. Lu, M., Guo, Q., Studier, W.F. & Kallenbach, N.F. Resolution of branched DNA substrates by T7 endonuclease I and its inhibition. J. Biol. Chem. 266, 2531–2536 (1991).

    CAS  PubMed  Google Scholar 

  25. Usdin, K. & Woodford, K.J. CGG repeats associated with DNA instability and chromosome fragility form structures that block DNA synthesis in vitro. Nucl. Acids Res. 23, 4202–4209 (1995).

    Article  CAS  Google Scholar 

  26. Selker, E.U. Premeiotic instability of repeated sequences in Neurospora crassa . Annu. Rev. Genet. 24, 579–613 (1990).

    Article  CAS  Google Scholar 

  27. Goyon, C., Nogueira, T.I.V. & Faugeron, G. Perpetuation of cytosine methylation in Ascobolus immersus implies a novel type of maintenance methylase. J. Mol. Biol. 240, 42–51 (1994).

    Article  CAS  Google Scholar 

  28. Matzke, M.A. & Matzke, A.J.M. Homology-dependent gene silencing in transgenic plants: what does it really tell us? Trends Genet. 11, 1–3 (1995).

    Article  CAS  Google Scholar 

  29. Matzke, A.J.M., Neuhuber, F., Park, Y.D., Ambros, R.F. & Matzke, M.A. Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes. Mol. Gen. Genet. 244, 219–229 (1994).

    Article  CAS  Google Scholar 

  30. Flavell, R.B. Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc. Natl. Acad. Sci. USA 91, 3490–3496 (1994).

    Article  CAS  Google Scholar 

  31. Finnegan, J. & McElroy, D. Transgene inactivation: plants fight back!. Biotechnol. 12, 883–888 (1994).

    Google Scholar 

  32. Assaad, F.F., Tucker, K.L. & Signer, E.R. Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. Plant Mol. Biol. 22, 1067–1085 (1993).

    Article  CAS  Google Scholar 

  33. Engels, W.R., Preston, C.R. & Johnson-Schlitz, D.M. Long-range cis preference in DNA homology search over the length of the Drosophila chromosome. Science 263, 1623–1625 (1994).

    Article  CAS  Google Scholar 

  34. Bender, J. & Fink, G. Epigenetic control of endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis . Cell 83, 725–734 (1995).

    Article  CAS  Google Scholar 

  35. Kricker, M.C., Drake, J.W. & Radman, M. Duplication-targeted DNA methylation and mutagenesis in the evolution of eukaryotic chromosomes. Proc. Natl. Acad. Sci. USA 89, 1075–1079 (1992).

    Article  CAS  Google Scholar 

  36. Chesnokov, I.N. & Schmid, C.W., Specific Alu binding protein from human sperm chromatin prevents DNA methylation. J. Biol. Chem. 270, 18539–18542 (1995).

    Article  CAS  Google Scholar 

  37. Rubin, C.M., VandeVoort, C.A., Tiplitz, R.L. & Schmid, C.W. Alu repeated DNAs are differentially methylated in primate germ cells. Nucl. Acids Res. 22, 5121–5127 (1994).

    Article  CAS  Google Scholar 

  38. Challita, P.-A. & Kohn, D.B. Lack of expression from a retroviral vector after transduction of murine hematopoietic stem cells is associated with methylation in vivo . Proc. Natl. Acad. Sci. USA 91, 2567–2571 (1994).

    Article  CAS  Google Scholar 

  39. Neumann, B., Kubicka, P. & Barlow, D.P. Characteristics of imprinted genes. Nature Genet. 9, 451–452 (1994).

    Google Scholar 

  40. Hatada, I. & Mukai, T. Genomic imprinting of p57KIP2, a cyclin-dependent kinase inhibitor in mouse. Nature Genet. 11, 204–206 (1995).

    Article  CAS  Google Scholar 

  41. Barlow, D.P. Methylation and imprinting: from host defense to gene regulation? Science 260, 309–310 (1993).

    Article  CAS  Google Scholar 

  42. Michaud, E. et al. Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev. 8, 1463–1472 (1994).

    Article  CAS  Google Scholar 

  43. Duhl, D., Vrieleing, H., Miller, K., Wolff, G. & Barsh, G. Neomorphic agouti mutations in obese yellow mice. Nature Genet. 7, 220–226 (1994).

    Article  Google Scholar 

  44. Moulton, T. et al. Epigenetic lesions at the H19 locus in Wilms' tumour patients. Nature Genet. 7, 440–447 (1994).

    Article  CAS  Google Scholar 

  45. Buiting, K. et al. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nature Genet. 9, 395–400 (1995).

    Article  CAS  Google Scholar 

  46. Yang, A.S., Shen, J.-C., Zingg, J.-M., Mi, S. & Jones, P.A. Hhal and Hpall DNA methyltransferases bind DNA mismatches, methylate uracil and block DNA repair. Nucl. Acids Res. 23, 1380–1387 (1995).

    Article  CAS  Google Scholar 

  47. Klimasuaskas, S. & Roberts, R.J. M.Hhal binds tightly to substrates containing mismatches at the target base. Nucl. Acids Res. 23, 1388–1395 (1995).

    Article  Google Scholar 

  48. Jue, K., Bestor, T.H. & Trasler, J. Regulated synthesis and localization of DNA methyltransferase during spermatogenesis. Biol. Reprod. 53, 561–569 (1995).

    Article  CAS  Google Scholar 

  49. Bird, A.P. Gene number, noise reduction and biological complexity. Trends Genet. 11, 94–100 (1995).

    Article  CAS  Google Scholar 

  50. Cleaver, J. It was a very good year for DNA repair. Cell 76, 1–4 (1994).

    Article  CAS  Google Scholar 

  51. Taylor, J.H. Origins of replication and gene regulation. Mol. Cell. Biochem. 61, 99–109 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bestor, T., Tycko, B. Creation of genomic methylation patterns. Nat Genet 12, 363–367 (1996). https://doi.org/10.1038/ng0496-363

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0496-363

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing