Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Have environmental mutagens caused oncomutations in people?

Abstract

Age-specific cancer rates show large historical increases that indict environmental risk factors. But these environmental factors did not necessarily act by increasing oncomutation rates. Mathematical analyses suggest selective effects on pre-existing oncomutants. The widely held hypothesis that environmental chemicals induce a substantial fraction of human point mutations has not been supported by observation. Direct measurement of the kinds and numbers of point mutations in human tissues have, in fact, found no clear relationship with exposure to environmental agents, save for sunlight in the skin. Alternative hypotheses that point mutations arise primarily as errors during turnover of undamaged DNA and that environmental conditions select rather than induce oncomutants seem to better explain the facts of environmental carcinogenesis in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: History (1921–1997) of age-specific mortality from all leukemias, OBS(t), in European-American males grouped by birth decade, 1800–1809 through 1980–1989.

Similar content being viewed by others

References

  1. U.S. Department of Health and Human Services. Vital Statistics of the United States (U.S. Government Printing Office, Hyattsville, Maryland, 1937–1992).

  2. U.S. Bureau of the Census. Mortality Statistics (Washington Government Printing Office, Washington D.C., 1900–1936).

  3. Kinzler, K.W. & Vogelstein, B. Cancer-susceptibility genes. Gatekeepers and caretakers. Nature 386, 761–763 (1997).

    Article  CAS  Google Scholar 

  4. Coller, H.A. & Thilly, W.G. Development and applications of mutational spectra technology. Env. Sci. Technol. 28, 478–487 (1994).

    Article  Google Scholar 

  5. Kensler, T.W., Groopman, J.D. & Wogan, G.N. Use of carcinogen–DNA and carcinogen–protein adduct biomarkers for cohort selection and as modifiable end points in chemoprevention trials. IARC Sci. Publ. 139, 237–248 (1996).

    CAS  Google Scholar 

  6. Thilly, W.G. Chemicals, genetic damage and the search for truth. Technol. Rev. 83, 37–41 (1981).

    Google Scholar 

  7. Holmquist, G.P. Endogenous lesions, S-phase-independent spontaneous mutations, and evolutionary strategies for base excision repair. Mutat. Res. 400, 59–68 (1998).

    Article  CAS  Google Scholar 

  8. Morley, A.A. & Turner, D.R. The contribution of exogenous and endogenous mutagens to in vivo mutations. Mutat. Res. 428, 11–15 (1999).

    Article  CAS  Google Scholar 

  9. Herrero-Jimenez, P. et al. Mutation, cell kinetics, and subpopulations at risk for colon cancer in the United States. Mutat. Res. 400, 553–578 (1998).

    Article  CAS  Google Scholar 

  10. Herrero-Jimenez, P., Tomita-Mitchell, A., Furth, E.E., Morgenthaler, S. & Thilly, W.G. Population risk and physiological parameters for colon cancer. The union of an explicit model for carcinogenesis with the public health records of the United States. Mutat. Res. 447, 73–116 (2000).

    Article  CAS  Google Scholar 

  11. Herrero-Jimenez, P. Determination of the historical changes in primary and secondary risk factors for cancer using U.S. public health records. (Massachusetts Institute of Technology Press, Cambridge, 2001).

    Google Scholar 

  12. Erb, L.T. A mathematical model of pancreatic cancer implicating industrialization as an environmental risk factor. (Massachusetts Institute of Technology Press, Cambridge, 2002).

    Google Scholar 

  13. Vodicka, P. et al. Biomarkers of styrene exposure in lamination workers: levels of O6-guanine DNA adducts, DNA strand breaks and mutant frequencies in the hypoxanthine guaninephosphoribosyltransferase gene in T-lymphocytes. Carcinogenesis 16, 1473–1481 (1995).

    Article  CAS  Google Scholar 

  14. Khrapko, K. et al. Mitochondrial mutational spectra in human cells and tissues. Proc. Natl. Acad. Sci. USA 94, 13798–13803 (1997).

    Article  CAS  Google Scholar 

  15. Alexandrov, K. et al. An improved fluorometric assay for dosimetry of benzo(a)pyrene diol-epoxide-DNA adducts in smokers' lung: comparisons with total bulky adducts and aryl hydrocarbon hydroxylase activity. Cancer Res. 52, 6248–6253 (1992).

    CAS  PubMed  Google Scholar 

  16. Coller, H.A. et al. Mitochondrial mutational spectra in smokers and nonsmokers. Mutational spectra of a 100 base pair mitochondrial DNA target sequence in bronchial epithelial cells: a comparison of smoking and nonsmoking twins. Cancer Res. 58, 1268–1277 (1998).

    CAS  PubMed  Google Scholar 

  17. Dunn, J.E. Cancer epidemiology in populations of the United States—with emphasis on Hawaii and California—and Japan. Cancer Res. 35, 3240–3245 (1975).

    CAS  PubMed  Google Scholar 

  18. Lichtenstein, P. et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343, 78–85 (2000).

    Article  CAS  Google Scholar 

  19. Dong, C. & Hemminki, K. Modification of cancer risks in offspring by sibling and parental cancers from 2,112,616 nuclear families. Int. J. Cancer 92, 144–150 (2001).

    Article  CAS  Google Scholar 

  20. Luebeck, E.G., Heidenreich, W.F., Hazelton, W.D., Paretzke, H.G. & Moolgavkar, S.H. Biologically based analysis of the data for the Colorado uranium miners cohort: age, dose and dose-rate effects. Radiat. Res. 152, 339–351 (1999).

    Article  CAS  Google Scholar 

  21. Burns, F.J., Vanderlaan, M., Sivak, A. & Albert, R.E. Regression kinetics of mouse skin papillomas. Cancer Res. 36, 1422–1427 (1976).

    CAS  PubMed  Google Scholar 

  22. Benzer, S. & Freese, E. Induction of specific mutations with 5-bromouracil. Proc. Natl. Acad. Sci. USA 44, 112–119 (1958).

    Article  CAS  Google Scholar 

  23. Cooper, D.N., Ball, E.V. & Krawczak, M. The human gene mutation database. Nucleic Acids Res. 26, 285–287 (1998).

    Article  CAS  Google Scholar 

  24. Hainaut, P. et al. IARC Database of p53 gene mutations in human tumors and cell lines: updated compilation, revised formats and new visualisation tools. Nucleic Acids Res. 26, 205–213 (1998).

    Article  CAS  Google Scholar 

  25. Cariello, N.F. et al. Databases and software for the analysis of mutations in the human p53 gene, human hprt gene and both the lacI and lacZ gene in transgenic rodents. Nucleic Acids Res. 26, 198–199 (1998).

    Article  CAS  Google Scholar 

  26. Oller, A.R. & Thilly, W.G. Mutational spectra in human B-cells. Spontaneous, oxygen and hydrogen peroxide-induced mutations at the hprt gene. J. Mol. Biol. 228, 813–826 (1992).

    Article  CAS  Google Scholar 

  27. Cariello, N.F., Keohavong, P., Kat, A.G. & Thilly, W.G. Molecular analysis of complex human cell populations: mutational spectra of MNNG and ICR-191. Mutat. Res. 231, 165–176 (1990).

    Article  CAS  Google Scholar 

  28. Zarbl, H., Sukumar, S., Arthur, A.V., Martin-Zanca, D. & Barbacid, M. Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats. Nature 315, 382–385 (1985).

    Article  CAS  Google Scholar 

  29. Cha, R.S., Thilly, W.G. & Zarbl, H. N-Nitroso-N-methylurea-induced rat mammary tumors arise from cells with preexisting oncogenic Hras-1 gene mutations. Proc. Natl. Acad. Sci. USA 91, 3749–3753 (1994).

    Article  CAS  Google Scholar 

  30. Jin, Z., Houle, B., Mikheev, A.M., Cha, R.S. & Zarbl, H. Alterations in H-ras1 promoter conformation during N-nitroso-N-methylurea-induced mammary carcinogenesis and pregnancy. Cancer Res. 56, 4927–4935 (1996).

    CAS  PubMed  Google Scholar 

  31. Albertini, R.J., Castle, K.L & Borcherding, W.R. T-cell cloning to detect the mutant 6-thioguanine-resistant lymphocytes present in human peripheral blood. Proc. Natl. Acad. Sci. USA 79, 6617–6621 (1982).

    Article  CAS  Google Scholar 

  32. Brash, D.E. et al. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 88, 10124–10128 (1991).

    Article  CAS  Google Scholar 

  33. Ziegler, A. et al. Sunburn and p53 in the onset of skin cancer. Nature 372, 730 (1994).

    Article  Google Scholar 

  34. Nakazawa, H. et al. UV and skin cancer: specific p53 gene mutation in normal skin as a biologically relevant exposure measurement. Proc. Natl. Acad. Sci. USA 91, 360–364 (1994).

    Article  CAS  Google Scholar 

  35. Zhang, W., Remenyik, E., Zelterman, D., Brash, D.E. & Wikonkal, N.M. Escaping the stem cell compartment: sustained UVB exposure allows p53-mutant keratinocytes to colonize adjacent epidermal proliferating units without incurring additional mutations. Proc. Natl. Acad. Sci. USA 98, 13948–13953 (2001).

    Article  CAS  Google Scholar 

  36. Brash, D.E. & Ponten, J. Skin precancer. Cancer Surv. 32, 69–113 (1998).

    CAS  PubMed  Google Scholar 

  37. Wynder, E.L. & Graham, E.A. Tobacco smoking as a possible etiologic factor in bronchogenic carcinoma: a study of six hundred and eighty four proved cases. J. Amer. Med. Assoc. 143, 329–336 (1950).

    Article  CAS  Google Scholar 

  38. Burkhart-Schultz, K.J., Thompson, C.L. & Jones, I.M. Spectrum of somatic mutation at the hypoxanthine phosphoribosyltransferase (hprt) gene of healthy people. Carcinogenesis 17, 1871–1883 (1996).

    Article  CAS  Google Scholar 

  39. Podlutsky, A., Hou, S.M., Nyberg, F., Pershagen, G. & Lambert, B. Influence of smoking and donor age on the spectrum of in vivo mutation at the HPRT locus in T lymphocytes of healthy adults. Mutat. Res. 431, 325–339 (1999).

    Article  CAS  Google Scholar 

  40. Curry, J., Karnaoukhova, L., Guenette, G.C. & Glickman, B.W. Influence of sex, smoking and age on human hprt mutation frequencies and spectra. Genetics 152, 1065–1077 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rodin, S.N. & Rodin, A.S. Human lung cancer and p53: the interplay between mutagenesis and selection. Proc. Natl. Acad. Sci. USA 97, 12244–12249 (2000).

    Article  CAS  Google Scholar 

  42. Hainaut, P. & Pfeifer, G.P. Patterns of p53 G→T transversions in lung cancers reflect the primary mutagenic signature of DNA-damage by tobacco smoke. Carcinogenesis 22, 367–374 (2001).

    Article  CAS  Google Scholar 

  43. Wallace, D.C. Mitochondrial diseases in man and mouse. Science 283, 1482–1488 (1999).

    Article  CAS  Google Scholar 

  44. Coller, H.A. et al. High frequency of homoplasmic mitochondrial DNA mutations in human tumors can be explained without selection. Nat. Genet. 28, 147–150 (2001).

    Article  CAS  Google Scholar 

  45. Holmquist, G.P. Chronic low-dose lesion equilibrium along genes: measurement, molecular epidemiology, and theory of the minimal relevant dose. Mutat. Res. 405, 155–159 (1998).

    Article  CAS  Google Scholar 

  46. Yang, K., Fang, J.L. & Hemminki, K. Abundant lipophilic DNA adducts in human tissues. Mutat. Res. 422, 285–295 (1998).

    Article  CAS  Google Scholar 

  47. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

    Article  CAS  Google Scholar 

  48. Pelc, S. Metabolic DNA in ciliated protozoa, salivary gland chromosomes, and mammalian cells. Int. Rev. Cytol. 32, 327–355 (1972).

    Article  CAS  Google Scholar 

  49. Grivell, A.R., Grivell, M.B. & Hanawalt, P.C. Turnover in bacterial DNA containing thymine or 5-bromouracil. J. Mol. Biol. 98, 219–233 (1975).

    Article  CAS  Google Scholar 

  50. Albertini, R.J. et al. Biomarkers for assessing occupational exposures to 1,3-butadiene. Chem. Biol. Interact. 135–136, 429–453 (2001).

    Article  Google Scholar 

  51. Vodicka, P. et al. An evaluation of styrene genotoxicity using several biomarkers in a 3-year follow-up study of hand-lamination workers. Mutat. Res. 445, 205–224 (1999).

    Article  CAS  Google Scholar 

  52. Muniappan, B.P. & Thilly, W.G. The DNA polymerase β error spectrum in adenomatous polyposis coli gene contains human colon tumor mutational hotspots. Cancer Res. 62, 3271–3275 (2002).

    CAS  PubMed  Google Scholar 

  53. Branum, M.E., Reardon, J.T. & Sancar, A. DNA repair excision nuclease attacks undamaged DNA. A potential source of spontaneous mutations. J. Biol. Chem. 276, 25421–25426 (2001).

    Article  CAS  Google Scholar 

  54. Tomita-Mitchell, A. et al. The mutational spectrum of the HPRT gene from human T cells in vivo share a significant concordant set of hotspots with MNNG treated human cells. Cancer Res. (in the press).

  55. Armitage, P. & Doll, R. A two-stage theory of carcinogenesis in relation to the age distribution of human cancer. Br. J. Cancer 9, 161–169 (1957).

    Article  Google Scholar 

Download references

Acknowledgements

The author wishes to acknowledge the assistance of dozens of colleagues and students in honing the arguments presented herein, especially K. Hemminki, S. Morgenthaler, L. Ehrenberg, D. Brash, P. Hanawalt, A. Morley and E. Gostjeva.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thilly, W. Have environmental mutagens caused oncomutations in people?. Nat Genet 34, 255–259 (2003). https://doi.org/10.1038/ng1205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1205

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing