Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting of the GTPase Irgm1 to the phagosomal membrane via PtdIns(3,4)P2 and PtdIns(3,4,5)P3 promotes immunity to mycobacteria

Abstract

Vertebrate immunity to infection enlists a newly identified family of 47-kilodalton immunity-related GTPases (IRGs). One IRG in particular, Irgm1, is essential for macrophage host defense against phagosomal pathogens, including Mycobacterium tuberculosis (Mtb). Here we show that Irgm1 targets the mycobacterial phagosome through lipid-mediated interactions with phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P2) and PtdIns(3,4,5)P3. An isolated Irgm1 amphipathic helix conferred lipid binding in vitro and in vivo. Substitutions in this region blocked phagosome recruitment and failed to complement the antimicrobial defect in Irgm1−/− macrophages. Removal of PtdIns(3,4,5)P3 or inhibition of class I phosphatidylinositol-3-OH kinase (PI(3)K) mimicked this effect in wild-type cells. Cooperation between Irgm1 and PI(3)K further facilitated the engagement of Irgm1 with its fusogenic effectors at the site of infection, thereby ensuring pathogen-directed responses during innate immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endogenous Irgm1 traffics from the cis-Golgi to MPGs in IFN-γ-activated macrophages.
Figure 2: Irgm1 is a membrane-associated protein that binds PtsIns(3,4,5)P3, PtdIns(3,4)P2 and DPG.
Figure 3: An Irgm1 C-terminal amphipathic helix confers membrane binding in vitro and in vivo.
Figure 4: Recruitment of Irgm1 to PtdIns-enriched membranes for phagolysosomal fusion requires its αK helix.
Figure 5: Distinct class I PI(3)K isoforms and SHIP1 furnish PtdIns(3,4,5)P3 and PI(3,4)P3 on MPGs for Irgm1 recruitment.
Figure 6: Spatial Irgm1 and PI(3)K convergence confers direct cross-regulatory functions.
Figure 7: Production of PtdIns(3,4,5)P3 and PtdIns(3,4)P2 promotes the binding of Irgm1 effectors at MPGs.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hingley-Wilson, S.M., Sambandamurthy, V.K. & Jacobs, W.R. Jr. Survival perspectives from the world's most successful pathogen, Mycobacterium tuberculosis. Nat. Immunol. 4, 949–955 (2003).

    Article  CAS  Google Scholar 

  2. Pieters, J. Mycobacterium tuberculosis and the macrophage. Maintaining a balance. Cell Host Microbe 3, 399–407 (2008).

    Article  CAS  Google Scholar 

  3. MacMicking, J.D., Taylor, G.A. & McKinney, J.D. Immune control of tuberculosis by IFN-γ-inducible LRG-47. Science 302, 654–659 (2003).

    Article  CAS  Google Scholar 

  4. Gutierrez, M.G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).

    Article  CAS  Google Scholar 

  5. Singh, S.B., Davis, A.S., Taylor, G.A. & Deretic, V. Human IRGM induces autophagy to eliminate intracellular bacteria. Science 313, 1438–1441 (2006).

    Article  CAS  Google Scholar 

  6. Xu, Y. et al. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27, 135–144 (2007).

    Article  CAS  Google Scholar 

  7. Feng, C.G. et al. Mice deficient in LRG-47 display increased susceptibility to mycobacterial infection associated with the induction of lymphopenia. J. Immunol. 172, 1163–1168 (2004).

    Article  CAS  Google Scholar 

  8. MacMicking, J.D. et al. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl. Acad. Sci. USA 94, 5243–5248 (1997).

    Article  CAS  Google Scholar 

  9. Ng, V.H., Cox, J.S., Sousa, A.O., MacMicking, J.D. & McKinney, J.D. Role of KatG catalase-peroxidase in mycobacterial pathogenesis: Countering the oxidative burst. Mol. Microbiol. 52, 1291–1302 (2004).

    Article  CAS  Google Scholar 

  10. Malik, S. et al. Alleles of the NRAMP1 gene are risk factors for pediatric tuberculosis disease. Proc. Natl. Acad. Sci. USA 102, 12183–12188 (2005).

    Article  CAS  Google Scholar 

  11. Bekpen, C. et al. The interferon-inducible p47 (IRG) GTPases in vertebrates: loss of the cell autonomous resistance mechanism in the human lineage. Genome Biol. 6, R92 (2005).

    Article  Google Scholar 

  12. Shenoy, A.R. et al. Emerging themes in IFN-γ-induced macrophage immunity by the p47 and p65 GTPase families. Immunobiology 8, 771–784 (2008).

    Article  Google Scholar 

  13. Taylor, G.A., Feng, C.G. & Sher, A. p47 GTPases: regulators of immunity to intracellular pathogens. Nat. Rev. Immunol. 4, 100–109 (2004).

    Article  CAS  Google Scholar 

  14. MacMicking, J.D. IFN-inducible GTPases and immunity to intracellular pathogens. Trends Immunol. 25, 601–609 (2004).

    Article  CAS  Google Scholar 

  15. Stephens, D.J. & Banting, G. Specificity of interaction between adaptor-complex medium chains and the tyrosine-based sorting motifs of TGN38 and lgp120. Biochem. J. 335, 567–572 (1998).

    Article  CAS  Google Scholar 

  16. Martens, S. et al. Mechanisms regulating the positioning of mouse p47 resistance GTPases LRG-47 and IIGP1 on cellular membranes: retargeting to plasma membrane induced by phagocytosis. J. Immunol. 173, 2594–2606 (2004).

    Article  CAS  Google Scholar 

  17. Ghosh, A., Uthaiah, R., Howard, J., Herrmann, C. & Wolf, E. Crystal structure of IIGP1: a paradigm for interferon-inducible p47 resistance GTPases. Mol. Cell 10, 727–739 (2004).

    Article  Google Scholar 

  18. McLaughlin, S. & Murray, D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438, 605–611 (2005).

    Article  CAS  Google Scholar 

  19. Manna, D., Albanese, A., Park, W.S. & Cho, W. Mechanistic basis of differential cellular responses of phosphatidylinositol 3,4-bisphosphate- and phosphatidylinositol 3,4,5-trisphosphate-binding pleckstrin homology domains. J. Biol. Chem. 282, 32093–32105 (2007).

    Article  CAS  Google Scholar 

  20. Chua, J. & Deretic, V. Mycobacterium tuberculosis reprograms waves of phosphatidylinositol 3-phosphate on phagosomal organelles. J. Biol. Chem. 279, 36983–36992 (2004).

    Article  Google Scholar 

  21. Fischer, K. et al. Mycobacterial lysocardiolipin is exported from phagosomes upon cleavage of cardiolipin by a macrophage-derived lysosomal phospholipase A2. J. Immunol. 167, 2187–2192 (2001).

    Article  CAS  Google Scholar 

  22. Koyasu, S. The role of PI(3)K in immune cells. Nat. Immunol. 4, 313–319 (2003).

    Article  CAS  Google Scholar 

  23. Kamen, L.A., Levinsohn, J. & Swanson, J.A. Differential association of phosphatidylinositol 3-kinase, SHIP-1, and PTEN with forming phagosomes. Mol. Biol. Cell 18, 2463–2472 (2007).

    Article  CAS  Google Scholar 

  24. Kamen, L.A., Levinsohn, J., Cadwallader, A., Tridandapani, S. & Swanson, J.A. SHIP-1 increases early oxidative burst and regulates phagosome maturation in macrophages. J. Immunol. 180, 7497–7505 (2008).

    Article  CAS  Google Scholar 

  25. Heo, W.D. et al. PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314, 1458–1461 (2006).

    Article  CAS  Google Scholar 

  26. Vieira, O. et al. Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J. Cell Biol. 155, 19–25 (2001).

    Article  CAS  Google Scholar 

  27. Vanhaesebroeck, B. et al. Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 70, 535–602 (2001).

    Article  CAS  Google Scholar 

  28. Hayakawa, M. et al. Synthesis and biological evaluation of 4-morpholino-2-phenylquinazolines and related derivatives as novel PI3 kinase p110alpha inhibitors. Bioorg. Med. Chem. 14, 6847–6858 (2006).

    Article  CAS  Google Scholar 

  29. Jackson, S.P. et al. PI3-kinase p110β: a new target for antithrombotic therapy. Nat. Med. 11, 507–514 (2005).

    Article  CAS  Google Scholar 

  30. Condliffe, A.M. et al. Sequential activation of class IB and class 1A PI(3)K is important for the primed respiratory burst of human but not murine neutrophils. Blood 106, 1432–1440 (2005).

    Article  CAS  Google Scholar 

  31. Rodriguez-Viciana, P. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370, 527–532 (1994).

    Article  CAS  Google Scholar 

  32. Chamberlain, M.D., Berry, T.R., Pastor, M.C. & Anderson, D.H. The p85alpha subunit of phosphatidylinositol 3′-kinase binds to and stimulates the GTPase activity of Rab proteins. J. Biol. Chem. 279, 48607–48614 (2004).

    Article  CAS  Google Scholar 

  33. Bos, J.L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865–877 (2007).

    Article  CAS  Google Scholar 

  34. Buxton, P. et al. Identification and characterization of Snapin as a ubiquitously expressed SNARE-binding protein that interacts with SNAP23 in non-neuronal cells. Biochem. J. 15, 433–440 (2003).

    Article  Google Scholar 

  35. Pan, P.Y., Tian, J.H. & Sheng, Z.H. Snapin facilitates the synchronization of synaptic vesicle fusion. Neuron 61, 412–424 (2009).

    Article  CAS  Google Scholar 

  36. Lu, L., Cai, Q., Tian, J.H. & Sheng, Z.H. Snapin associates with late endocytic compartments and interacts with late endosomal SNAREs. Biosci. Rep. 29, 261–269 (2009).

    Article  CAS  Google Scholar 

  37. Stamnes, M.A. et al. An integral membrane component of coatomer-coated transport vesicles defines a family of proteins involved in budding. Proc. Natl. Acad. Sci. USA 92, 8011–8015 (1995).

    Article  CAS  Google Scholar 

  38. Hawkins, P.T., Anderson, K.E., Davidson, K. & Stephens, L.R. Signaling through class I PI(3)Ks in mammalian cells. Biochem. Soc. Trans. 34, 647–662 (2006).

    Article  CAS  Google Scholar 

  39. Deb, D.K. et al. Activation of protein kinase Cδ by IFN-γ. J. Immunol. 171, 267–273 (2003).

    Article  CAS  Google Scholar 

  40. Yeung, T. et al. Receptor activation alters inner surface potential during phagocytosis. Science 313, 347–351 (2006).

    Article  CAS  Google Scholar 

  41. Ferguson, K.M. et al. Structural basis for the discrimination of 3-phosphoinositides by pleckstrin homology domains. Mol. Cell 6, 373–384 (2000).

    Article  CAS  Google Scholar 

  42. Rodriguez-Viciana, P. et al. Role of phosphoinositide 3-OH kinase in cell transformation and control of actin cytoskeleton by Ras. Cell 89, 457–467 (1997).

    Article  CAS  Google Scholar 

  43. Christoforidis, S. et al. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat. Cell Biol. 1, 249–252 (1999).

    Article  CAS  Google Scholar 

  44. Zhao, Z. et al. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 4, 458–469 (2008).

    Article  CAS  Google Scholar 

  45. Jayachandran, R. et al. Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell 130, 37–50 (2007).

    Article  CAS  Google Scholar 

  46. Kuijl, C. et al. Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature 450, 725–730 (2007).

    Article  CAS  Google Scholar 

  47. Feng, C.G. et al. The immunity-related GTPase Irgm1 promotes the expansion of activated CD4+ T cell populations by preventing interferon-γ-induced cell death. Nat. Immunol. 9, 1279–1287 (2008).

    Article  CAS  Google Scholar 

  48. Luo, Y., Szilvasi, A., Chen, X., DeWolf, W.C. & O'Donnell, M.A. A novel method for monitoring Mycobacterium bovis BCG trafficking with recombinant BCG expressing green fluorescent protein. Clin. Diagn. Lab. Immunol. 3, 761–768 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Taguchi, T., Pypaert, M. & Warren, G. Biochemical sub-fractionation of the mammalian Golgi apparatus. Traffic 4, 344–352 (2003).

    Article  CAS  Google Scholar 

  50. Mileykovskaya, E. et al. Cardiolipin binds nonyl acridine orange by aggregating the dye at exposed hydrophobic domains on bilayer surfaces. FEBS Lett. 507, 187–190 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Cantley (Harvard Medical School), P. De Camilli (Yale University School of Medicine), J. Galan (Yale University School of Medicine), P. Lengyel (Yale University School of Medicine), R. Lin (Stony Brook University), J. Lucocq (University of Dundee), T. Meyer (Stanford University), C. Roy (Yale University School of Medicine), B. Vanhaesebroeck (University of London) and G. Warren (Vienna Biocenter) for antibodies, plasmids or cDNAs used in this study; P. Cresswell (Yale University School of Medicine) for the yeast two-hybrid mouse embryonic fibroblast library; G. Taylor (Duke University Medical Center) for Irgm1−/− mice, Y. Lu (University of Iowa) for BCG-GFP; and A. Shenoy for help with Irgm1 crystallographic modeling. Supported by the National Institute of Allergy and Infectious Diseases of the US National Institutes of Health (R01 AI068041-01A1), the Burroughs-Wellcome Fund (1007845), Edward R. Mallinckrodt Foundation (R06152), the Searle Foundation (05-F-114), the Cancer Research Institute, the W.W. Winchester Foundation (J.D.M.) and the Japanese Society for the Promotion of Science (T.M.).

Author information

Authors and Affiliations

Authors

Contributions

S.T., T.M., H.-P.C., M.P. and J.D.M. did the experimental design, data analysis and interpretation; S.T., H.-P.C. and T.M. did molecular and biochemical analyses (affinity purification, gel filtration, yeast-two hybrid, in vitro assays); S.T., T.M., H.-P.C. and J.D.M. did scanning confocal microscopy; M.P. and J.D.M. did transmission electron microscopy of immunolabeled cryosections; J.D.M. wrote the manuscript; and all authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to John D MacMicking.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–2 (PDF 6130 kb)

Supplementary Movie 1

Live imaging of Irgm1 (RFP-Irgm1, pseudocolored green) translocation to sites of M. bovis BCG internalization (white arrows) in IFN-γ-activated RAW264.7 macrophages. EGFP-BCG, pseudocolored red. (AVI 11535 kb)

Supplementary Movie 2

Triple-labeled live imaging of Irgm1 translocation to PtdIns(3,4,5)P3-pseudopods internalizing M. bovis BCG in IFN-γ-activated RAW264.7 cells (white arrow). CFP-Irgm1 (pseudocolored green); YFP-GRP1-PH (pseudocolored red); Cy5-BCG (blue). (AVI 951 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, S., Choi, HP., Matsuzawa, T. et al. Targeting of the GTPase Irgm1 to the phagosomal membrane via PtdIns(3,4)P2 and PtdIns(3,4,5)P3 promotes immunity to mycobacteria. Nat Immunol 10, 907–917 (2009). https://doi.org/10.1038/ni.1759

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1759

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing