Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elevated and sustained expression of the transcription factors Egr1 and Egr2 controls NKT lineage differentiation in response to TCR signaling

A Corrigendum to this article was published on 19 March 2013

This article has been updated

Abstract

Interactions driven by the T cell antigen receptor (TCR) determine the lineage fate of CD4+CD8+ thymocytes, but the molecular mechanisms that induce the lineage-determining transcription factors are unknown. Here we found that TCR-induced transcription factors Egr2 and Egr1 had higher and more-prolonged expression in precursors of the natural killer T (NKT) than in cells of conventional lineages. Chromatin immunoprecipitation followed by deep sequencing showed that Egr2 directly bound and activated the promoter of Zbtb16, which encodes the NKT lineage–specific transcription factor PLZF. Egr2 also bound the promoter of Il2rb, which encodes the interleukin 2 (IL-2) receptor β-chain, and controlled the responsiveness to IL-15, which signals the terminal differentiation of the NKT lineage. Thus, we propose that persistent higher expression of Egr2 specifies the early and late stages of NKT lineage differentiation, providing a discriminating mechanism that enables TCR signaling to 'instruct' a thymic lineage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Higher and more-prolonged expression of Egr1 and Egr2 in thymic precursors of NKT cells.
Figure 2: Induction of Egr2 and Zbtb16 in thymocytes that had received signaling via TCRβ in vivo.
Figure 3: ChIP-seq analysis of Egr2-binding sites.
Figure 4: Egr2 binds and transactivates the Zbtb16 promoter.
Figure 5: Egr2 controls early and late NKT developmental checkpoints.
Figure 6: Egr2 is required for the activation of PLZF in NKT cell development.
Figure 7: Egr2 is required for the developmental transition from stage 2 to stage 3.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Change history

  • 04 April 2012

    In the version of this article initially published, the fourth author's name lacked the middle initial. The correct name is Chauncey J. Spooner. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Godfrey, D.I., Stankovic, S. & Baxter, A.G. Raising the NKT cell family. Nat. Immunol. 11, 197–206 (2010).

    Article  CAS  Google Scholar 

  2. Bendelac, A., Savage, P.B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    Article  CAS  Google Scholar 

  3. Benlagha, K., Wei, D.G., Veiga, J., Teyton, L. & Bendelac, A. Characterization of the early stages in thymic NKT cell development. J. Exp. Med. 202, 485–492 (2005).

    Article  CAS  Google Scholar 

  4. Savage, A.K. et al. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29, 391–403 (2008).

    Article  CAS  Google Scholar 

  5. Kovalovsky, D. et al. The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat. Immunol. 9, 1055–1064 (2008).

    Article  CAS  Google Scholar 

  6. Thomas, S.Y. et al. PLZF induces an intravascular surveillance program mediated by long-lived LFA-1-ICAM-1 interactions. J. Exp. Med. 208, 1179–1188 (2011).

    Article  CAS  Google Scholar 

  7. Raberger, J. et al. The transcriptional regulator PLZF induces the development of CD44 high memory phenotype T cells. Proc. Natl. Acad. Sci. USA 105, 17919–17924 (2008).

    Article  CAS  Google Scholar 

  8. Savage, A.K., Constantinides, M.G. & Bendelac, A. Promyelocytic leukemia zinc finger turns on the effector T cell program without requirement for agonist TCR signaling. J. Immunol. 186, 5801–5806 (2011).

    Article  CAS  Google Scholar 

  9. Shao, H., Kono, D.H., Chen, L.Y., Rubin, E.M. & Kaye, J. Induction of the early growth response (Egr) family of transcription factors during thymic selection. J. Exp. Med. 185, 731–744 (1997).

    Article  CAS  Google Scholar 

  10. Carter, J.H., Lefebvre, J.M., Wiest, D.L. & Tourtellotte, W.G. Redundant role for early growth response transcriptional regulators in thymocyte differentiation and survival. J. Immunol. 178, 6796–6805 (2007).

    Article  CAS  Google Scholar 

  11. Lawson, V.J., Weston, K. & Maurice, D. Early growth response 2 regulates the survival of thymocytes during positive selection. Eur. J. Immunol. 40, 232–241 (2010).

    Article  CAS  Google Scholar 

  12. Lazarevic, V. et al. The gene encoding early growth response 2, a target of the transcription factor NFAT, is required for the development and maturation of natural killer T cells. Nat. Immunol. 10, 306–313 (2009).

    Article  CAS  Google Scholar 

  13. Hu, T., Gimferrer, I., Simmons, A., Wiest, D. & Alberola-Ila, J. The Ras/MAPK pathway is required for generation of iNKT cells. PLoS ONE 6, e19890 (2011).

    Article  CAS  Google Scholar 

  14. Laslo, P. et al. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126, 755–766 (2006).

    Article  CAS  Google Scholar 

  15. Rengarajan, J. et al. Sequential involvement of NFAT and Egr transcription factors in FasL regulation. Immunity 12, 293–300 (2000).

    Article  CAS  Google Scholar 

  16. Bendelac, A. et al. CD1 recognition by mouse NK1+ T lymphocytes. Science 268, 863–865 (1995).

    Article  CAS  Google Scholar 

  17. Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786–1789 (2004).

    Article  CAS  Google Scholar 

  18. Griewank, K. et al. Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. Immunity 27, 751–762 (2007).

    Article  CAS  Google Scholar 

  19. Swirnoff, A.H. & Milbrandt, J. DNA-binding specificity of NGFI-A and related zinc finger transcription factors. Mol. Cell. Biol. 15, 2275–2287 (1995).

    Article  CAS  Google Scholar 

  20. Townsend, M.J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT cells. Immunity 20, 477–494 (2004).

    Article  CAS  Google Scholar 

  21. Castillo, E.F., Acero, L.F., Stonier, S.W., Zhou, D. & Schluns, K.S. Thymic and peripheral microenvironments differentially mediate development and maturation of iNKT cells by IL-15 transpresentation. Blood 116, 2494–2503 (2010).

    Article  CAS  Google Scholar 

  22. Matsuda, J.L. et al. Homeostasis of Vα14i NKT cells. Nat. Immunol. 3, 966–974 (2002).

    Article  CAS  Google Scholar 

  23. Ikawa, T., Fujimoto, S., Kawamoto, H., Katsura, Y. & Yokota, Y. Commitment to natural killer cells requires the helix-loop-helix inhibitor Id2. Proc. Natl. Acad. Sci. USA 98, 5164–5169 (2001).

    Article  CAS  Google Scholar 

  24. Monticelli, L.A. et al. Transcriptional regulator Id2 controls survival of hepatic NKT cells. Proc. Natl. Acad. Sci. USA 106, 19461–19466 (2009).

    Article  CAS  Google Scholar 

  25. Boos, M.D., Yokota, Y., Eberl, G. & Kee, B.L. Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J. Exp. Med. 204, 1119–1130 (2007).

    Article  CAS  Google Scholar 

  26. Doulatov, S. et al. PLZF is a regulator of homeostatic and cytokine-induced myeloid development. Genes Dev. 23, 2076–2087 (2009).

    Article  CAS  Google Scholar 

  27. Collins, S. et al. Opposing regulation of T cell function by Egr-1/NAB2 and Egr-2/Egr-3. Eur. J. Immunol. 38, 528–536 (2008).

    Article  CAS  Google Scholar 

  28. Gallo, E.M. et al. Calcineurin sets the bandwidth for discrimination of signals during thymocyte development. Nature 450, 731–735 (2007).

    Article  CAS  Google Scholar 

  29. Kreslavsky, T. et al. TCR-inducible PLZF transcription factor required for innate phenotype of a subset of γδ T cells with restricted TCR diversity. Proc. Natl. Acad. Sci. USA 106, 12453–12458 (2009).

    Article  CAS  Google Scholar 

  30. Moran, A.E. et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 208, 1279–1289 (2011).

    Article  CAS  Google Scholar 

  31. Veillette, A., Dong, Z. & Latour, S. Consequence of the SLAM-SAP signaling pathway in innate-like and conventional lymphocytes. Immunity 27, 698–710 (2007).

    Article  CAS  Google Scholar 

  32. Fedeli, M. et al. Dicer-dependent microRNA pathway controls invariant NKT cell development. J. Immunol. 183, 2506–2512 (2009).

    Article  CAS  Google Scholar 

  33. Wu, Q. et al. MiR-150 promotes gastric cancer proliferation by negatively regulating the pro-apoptotic gene EGR2. Biochem. Biophys. Res. Commun. 392, 340–345 (2010).

    Article  CAS  Google Scholar 

  34. Bendelac, A., Bonneville, M. & Kearney, J.F. Autoreactivity by design: innate B and T lymphocytes. Nat. Rev. Immunol. 1, 177–186 (2001).

    Article  CAS  Google Scholar 

  35. Hayday, A.C. Gammadelta T cells and the lymphoid stress-surveillance response. Immunity 31, 184–196 (2009).

    Article  CAS  Google Scholar 

  36. Lambolez, F., Kronenberg, M. & Cheroutre, H. Thymic differentiation of TCRαβ+ CD8αα+ IELs. Immunol. Rev. 215, 178–188 (2007).

    Article  CAS  Google Scholar 

  37. Kronenberg, M. & Rudensky, A. Regulation of immunity by self-reactive T cells. Nature 435, 598–604 (2005).

    Article  CAS  Google Scholar 

  38. Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    Article  CAS  Google Scholar 

  39. Ruan, Q. et al. Development of Foxp3+ regulatory T cells is driven by the c-Rel enhanceosome. Immunity 31, 932–940 (2009).

    Article  CAS  Google Scholar 

  40. Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).

    Article  CAS  Google Scholar 

  41. Turchinovich, G. & Hayday, A.C. Skint-1 identifies a common molecular mechanism for the development of interferon-γ-secreting versus interleukin-17-secreting γσ T Cells. Immunity 35, 59–68 (2011).

    Article  CAS  Google Scholar 

  42. Singer, A., Adoro, S. & Park, J.H. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nat. Rev. Immunol. 8, 788–801 (2008).

    Article  CAS  Google Scholar 

  43. Sciammas, R. et al. An incoherent regulatory network architecture that orchestrates B cell diversification in response to antigen signaling. Mol. Syst. Biol. 7, 495 (2011).

    Article  Google Scholar 

  44. Heng, T.S. & Painter, M.W. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  Google Scholar 

  45. Ovcharenko, I., Nobrega, M.A., Loots, G.G. & Stubbs, L. ECR Browser: a tool for visualizing and accessing data from comparisons of multiple vertebrate genomes. Nucleic Acids Res. 32, W280–286 (2004).

    Article  CAS  Google Scholar 

  46. Taillebourg, E., Buart, S. & Charnay, P. Conditional, floxed allele of the Krox20 gene. Genesis 32, 112–113 (2002).

    Article  CAS  Google Scholar 

  47. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191, 1895–1903 (2000).

    Article  CAS  Google Scholar 

  48. Valouev, A. et al. Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat. Methods 5, 829–834 (2008).

    Article  CAS  Google Scholar 

  49. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  Google Scholar 

  50. Kent, W.J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Charnay (Institut National de la Santé et de la Recherche Médicale) for Egr1-Egr2-deficient mice; E. Bartom for help with analysis of ChIP-seq data; M. Wang for help with statistical analyses; the University of Chicago Animal Resource Center, Core Flow Cytometry Facility, DNA Sequencing Facility; the National Institute of Allergy and Infectious Diseases tetramer facility for CD1d tetramers; and the ImmGen Consortium for data assembly. Supported by the US National Institutes of Health (AI038339 and AI053725; and T32AI0709030 to M.P.S.), the Digestive Disease Research Core Center (P30 DK42086), the Cancer Research Institute (R.M.) and the Howard Hughes Medical Institute (A.B.).

Author information

Authors and Affiliations

Authors

Contributions

M.P.S. designed and did experiments and analyzed the data; R.M. did the ChIP-seq experiment in Figure 3; M.K.L. assisted with the experiments in Figure 1; C.J.S. and H.S. assisted with the design and interpretation of experiments and provided constructs, reagents and mouse strains; K.B. analyzed the ChIP-seq experiment in Figure 3; F.M. assisted with experiments; A.B. designed and supervised experiments and data analysis; and M.P.S. and A.B. wrote the manuscript.

Corresponding author

Correspondence to Albert Bendelac.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiler, M., Mathew, R., Liszewski, M. et al. Elevated and sustained expression of the transcription factors Egr1 and Egr2 controls NKT lineage differentiation in response to TCR signaling. Nat Immunol 13, 264–271 (2012). https://doi.org/10.1038/ni.2230

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2230

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing