Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cytomegalovirus and tumor stress surveillance by binding of a human γδ T cell antigen receptor to endothelial protein C receptor

Abstract

T cells bearing γδ T cell antigen receptors (TCRs) function in lymphoid stress surveillance. However, the contribution of γδ TCRs to such responses is unclear. Here we found that the TCR of a human Vγ4Vδ5 clone directly bound endothelial protein C receptor (EPCR), which allowed γδ T cells to recognize both endothelial cells targeted by cytomegalovirus and epithelial tumors. EPCR is a major histocompatibility complex–like molecule that binds lipids analogously to the antigen-presenting molecule CD1d. However, the Vγ4Vδ5 TCR bound EPCR independently of lipids, in an antibody-like way. Moreover, the recognition of target cells by γδ T cells required a multimolecular stress signature composed of EPCR and costimulatory ligand(s). Our results demonstrate how a γδ TCR mediates recognition of broadly stressed human cells by engaging a stress-regulated self antigen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LES TCR–mediated recognition of target cells is blocked by mAb 2E9.
Figure 2: Identification of EPCR as the 2E9 ligand.
Figure 3: EPCR directly binds LES γδ TCR.
Figure 4: EPCR specificity of Vδ2 γδ T cell populations.
Figure 5: Effect of infection with CMV and expression of EPCR on recognition by LES cells.
Figure 6: The LES TCR binds EPCR independently of lipid presentation.
Figure 7: Activation of the LES clone by CMV-infected cells depends on constitutive and CMV-induced costimulatory molecules.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001).

    Article  CAS  Google Scholar 

  2. Born, W. et al. Immunoregulatory functions of γδ T cells. Adv. Immunol. 71, 77–144 (1999).

    Article  CAS  Google Scholar 

  3. Ma, Y. et al. Contribution of IL-17a producing γδ T cells to the efficacy of anticancer chemotherapy. J. Exp. Med. 208, 491–503 (2011).

    Article  CAS  Google Scholar 

  4. Wilhelm, M. γδ T cells for immune therapy of patients with lymphoid malignancies. Blood 102, 200–206 (2003).

    Article  CAS  Google Scholar 

  5. Costa, G. et al. Control of Plasmodium falciparum erythrocytic cycle: γδ T cells target the red blood cell-invasive merozoites. Blood 118, 6952–6962 (2011).

    Article  CAS  Google Scholar 

  6. Peng, G. et al. Tumor-infiltrating γδ T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway. Immunity 27, 334–348 (2007).

    Article  CAS  Google Scholar 

  7. Brandes, M., Willimann, K. & Moser, B. Professional antigen-presentation function by human γδ T Cells. Science 309, 264–268 (2005).

    Article  CAS  Google Scholar 

  8. Toulon, A. et al. A role for human skin-resident T cells in wound healing. J. Exp. Med. 206, 743–750 (2009).

    Article  CAS  Google Scholar 

  9. Dieli, F. et al. Targeting human γδ T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res. 67, 7450–7457 (2007).

    Article  CAS  Google Scholar 

  10. Zarski, J. et al. Repeated administrations of IPH1101 in monotherapy or combined with low dose IL2 (2 M IU) in patients chronically infected with hepatitis C virus: efficacy, safety and immunomonitoring results from a phase 2 study. Hepatology 50, 1031A (2009).

    Google Scholar 

  11. Bonneville, M., O'Brien, R.L. & Born, W.K. γδ T cell effector functions: a blend of innate programming and acquired plasticity. Nat. Rev. Immunol. 10, 467–478 (2010).

    Article  CAS  Google Scholar 

  12. Hayday, A.C. γδ T cells and the lymphoid stress-surveillance response. Immunity 31, 184–196 (2009).

    Article  CAS  Google Scholar 

  13. Strid, J. et al. Acute upregulation of an NKG2D ligand promotes rapid reorganization of a local immune compartment with pleiotropic effects on carcinogenesis. Nat. Immunol. 9, 146–154 (2008).

    Article  CAS  Google Scholar 

  14. Adams, E.J., Chien, Y.H. & Garcia, K.C. Structure of a γδ T cell receptor in complex with the nonclassical MHC T22. Science 308, 227–231 (2005).

    Article  CAS  Google Scholar 

  15. Scotet, E. et al. Tumor recognition following Vγ9Vδ2 T cell receptor interactions with a surface F1-ATPase-related structure and apolipoprotein A-I. Immunity 22, 71–80 (2005).

    Article  CAS  Google Scholar 

  16. Bukowski, J.F., Morita, C.T. & Brenner, M.B. Recognition and destruction of virus-infected cells by human γδ CTL. J. Immunol. 153, 5133–5140 (1994).

    CAS  PubMed  Google Scholar 

  17. Constant, P. et al. Stimulation of human γδ T cells by nonpeptidic mycobacterial ligands. Science 264, 267–270 (1994).

    Article  CAS  Google Scholar 

  18. Gober, H.J. et al. Human T cell receptor γδ cells recognize endogenous mevalonate metabolites in tumor cells. J. Exp. Med. 197, 163–168 (2003).

    Article  CAS  Google Scholar 

  19. Halary, F. et al. Shared reactivity of Vdelta2-neg γδ T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J. Exp. Med. 201, 1567–1578 (2005).

    Article  CAS  Google Scholar 

  20. Maeurer, M., Zitvogel, L., Elder, E., Storkus, W.J. & Lotze, M.T. Human intestinal Vδ1+ T cells obtained from patients with colon cancer respond exclusively to SEB but not to SEA. Natural Immunity 14, 188–197 (1995).

    CAS  PubMed  Google Scholar 

  21. Spada, F.M. et al. Self-Recognition of CD1 by γδ T cells: implications for innate immunity. J. Exp. Med. 191, 937–948 (2000).

    Article  CAS  Google Scholar 

  22. Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279, 1737–1740 (1998).

    Article  CAS  Google Scholar 

  23. Déchanet, J. et al. Implication of γδ T cells in the human immune response to cytomegalovirus. J. Clin. Invest. 103, 1437–1449 (1999).

    Article  Google Scholar 

  24. Pitard, V. et al. Long-term expansion of effector-memory Vδ2 γδ T cells is a specific blood signature of CMV infection. Blood 112, 1317–1324 (2008).

    Article  CAS  Google Scholar 

  25. Ehl, S. et al. A variant of SCID with specific immune responses and predominance of γδ T cells. J. Clin. Invest. 115, 3140–3148 (2005).

    Article  CAS  Google Scholar 

  26. Vermijlen, D. et al. Human cytomegalovirus elicits fetal γδ T cell responses in utero. J. Exp. Med. 207, 807–821 (2010).

    Article  CAS  Google Scholar 

  27. Knight, A. et al. The role of Vδ2-negative γδ T cells during cytomegalovirus reactivation in recipients of allogeneic stem cell transplantation. Blood 116, 2164–2172 (2010).

    Article  CAS  Google Scholar 

  28. Couzi, L. et al. Cytomegalovirus-induced γδ T cells associate with reduced cancer risk after kidney transplantation. J. Am. Soc. Nephrol. 21, 181–188 (2010).

    Article  CAS  Google Scholar 

  29. Devaud, C. et al. Antitumor activity of γδ T cells reactive against cytomegalovirus-infected cells in a mouse xenograft tumor model. Cancer Res. 69, 3971–3978 (2009).

    Article  CAS  Google Scholar 

  30. Couzi, L. et al. Common features of γδ T cells and CD8+ αβ T cells responding to human cytomegalovirus infection in kidney transplant recipients. J. Infect. Dis. 200, 1415–1424 (2009).

    Article  CAS  Google Scholar 

  31. Lafarge, X. et al. Expression of MHC class I receptors confers functional intraclonal heterogeneity to a reactive expansion of γδ T cells. Eur. J. Immunol. 35, 1896–1905 (2005).

    Article  CAS  Google Scholar 

  32. Oganesyan, V. et al. The crystal structure of the endothelial protein C receptor and a bound phospholipid. J. Biol. Chem. 277, 24851–24854 (2002).

    Article  CAS  Google Scholar 

  33. Esmon, C.T. Structure and functions of the endothelial cell protein C receptor. Crit. Care Med. 32, S298–S301 (2004).

    Article  CAS  Google Scholar 

  34. Scheffer, G.L. et al. Expression of the vascular endothelial cell protein C receptor in epithelial tumor cells. Eur. J. Cancer 38, 1535–1542 (2002).

    Article  CAS  Google Scholar 

  35. Tsuneyoshi, N. et al. Expression and anticoagulant function of the endothelial cell protein C receptor (EPCR) in cancer cell lines. Thromb. Haemost. 85, 356–361 (2001).

    Article  CAS  Google Scholar 

  36. Cheng, T. et al. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat. Med. 9, 338–342 (2003).

    Article  CAS  Google Scholar 

  37. Schild, H. et al. The nature of MHC recognition by γδ T cells. Cell 76, 29–37 (1994).

    Article  CAS  Google Scholar 

  38. Tikhonova, A.N. et al. αβ T cell receptors that do not undergo major histocompatibility complex-specific thymic selection possess antibody-like recognition specificities. Immunity 36, 79–91 (2012).

    Article  CAS  Google Scholar 

  39. Noriega, V., Redmann, V., Gardner, T. & Tortorella, D. Diverse immune evasion strategies by human cytomegalovirus. Immunologic Res 1–12 (2012).

  40. Garrido, F., Cabrera, T. & Aptsiauri, N. “Hard” and “soft” lesions underlying the HLA class I alterations in cancer cells: Implications for immunotherapy. Int. J. Cancer 127, 249–256 (2010).

    CAS  PubMed  Google Scholar 

  41. Chodaczek, G., Papanna, V., Zal, M.A. & Zal, T. Body-barrier surveillance by epidermal γδ TCRs. Nat. Immunol. 13, 272–282 (2012).

    Article  CAS  Google Scholar 

  42. Squizzato, A., Gerdes, V.E. & Buller, H.R. Effects of human cytomegalovirus infection on the coagulation system. Thromb. Haemost. 93, 403–410 (2005).

    Article  CAS  Google Scholar 

  43. Couzi, L. et al. Antibody-dependent anti-cytomegalovirus activity of human γδ T cells expressing CD16 (FcγRIIIa). Blood 119, 1418–1427 (2012).

    Article  CAS  Google Scholar 

  44. Géronimi, F. et al. Highly efficient lentiviral gene transfer in CD34+ and CD34+38lin cells from mobilized peripheral blood after cytokine prestimulation. Stem Cells 21, 472–480 (2003).

    Article  Google Scholar 

  45. Peterman, S.M., Dufresne, C.P. & Horning, S. The use of a hybrid linear trap-FT-ICR mass spectrometer for on-line high resolution-high mass accuracy bottom-up sequencing. J. Biomol. Tech. 16, 112–124 (2005).

    PubMed  PubMed Central  Google Scholar 

  46. Eng, J.K., McCormack, A.L. & Yates Iii, J.R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  Google Scholar 

  47. Willcox, B.E. et al. TCR binding to peptide-MHC stabilizes a flexible recognition interface. Immunity 10, 357–365 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.-L. Michel, M. Swamy and F. Mohammed for contributions to this project; D. Price for discussions; and V. Venturi for analysis of TCR nontemplated nucleotide additions. Supported by Fondation pour la Recherche Médicale (DEQ20051205738 and DEQ20110421287), Agence Nationale de la Recherche (ANR-05-JCJC-0129-01), Ligue Nationale contre le Cancer, Association pour la Recherche sur le Cancer (A09-1-5022), Institut National contre le Cancer (INCa TUMOSTRESS) Cancer Research UK (C17422-A7986 and C17422-A11740 to B.E.W., supporting C.R.W. and M.S.), the Wellcome Trust (T.S. and A.C.H.) and Boehringer Ingelheim Fonds (T.S. and A.C.H.).

Author information

Authors and Affiliations

Authors

Contributions

C.R.W. and V.P. did most of the experiments, analyzed data and designed experiments; S.N., L.C. and M.S. did experiments and analyzed data; T.S. did gene profiling and analysis; J.-F.M. helped supervise research; and A.C.H., B.E.W., J.D.-M. analyzed and interpreted data, designed and supervised research and wrote the manuscript.

Corresponding authors

Correspondence to Benjamin E Willcox or Julie Déchanet-Merville.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 391 kb)

Supplementary Table 1

Illumina expression profiling of 2E9L+ vs 2E9L(−) cell lines (XLS 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willcox, C., Pitard, V., Netzer, S. et al. Cytomegalovirus and tumor stress surveillance by binding of a human γδ T cell antigen receptor to endothelial protein C receptor. Nat Immunol 13, 872–879 (2012). https://doi.org/10.1038/ni.2394

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2394

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing