Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drosophila innate immunity: an evolutionary perspective

In response to microbial infections, Drosophila mounts a multifaceted immune response involving humoral reactions that culminate in the destruction of invading organisms by lytic peptides. These defense mechanisms are activated via two distinct signaling pathways. One of these, the Toll pathway, controls resistance to fungal and Gram-positive bacterial infections, whereas the Imd pathway is responsible for defense against Gram-negative bacterial infections. Current evidence indicates that recognition of infectious nonself agents results from interactions between microbial wall components and extracellular pattern recognition proteins. We discuss here evolutionary perspectives on our present understanding of the antimicrobial defenses of Drosophila.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The antimicrobial defense of Drosophila.
Figure 2: Toll pathways in Drosophila and mammals.
Figure 3: The Imd pathway of Drosophila and the TNF-α receptor pathway in mammals.

References

  1. Janeway, C. A. Jr Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 1, 1–13 (1989).

    Article  Google Scholar 

  2. Medzhitov, R. & Janeway, C. A. Jr Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Shai, Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta 1462, 55–70 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Lehrer, R. I. & Ganz, T. Antimicrobial peptides in mammalian and insect host defence. Curr. Opin. Immunol. 11, 23–27 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Fearon, D. T. & Locksley, R. M. The instructive role of innate immunity in the acquired immune response. Science 272, 50–53 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Schnare, M. et al. Toll-like receptors control activation of adaptive immune responses. Nature Immunol. 2, 947–950 (2001).

    Article  CAS  Google Scholar 

  7. Ferrandon, D. et al. A drosomycin-GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J. 17, 1217–1227 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tzou, P. et al. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13, 737–748 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Onfelt Tingvall, T., Roos, E. & Engstrom, Y. The imd gene is required for local Cecropin expression in Drosophila barrier epithelia. EMBO Rep. 2, 239–243 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rizki, T. M. & Rizki, R. M. in Insect Ultrastructure (eds King, R. C. & Akai, H.) 579–604 (Plenum Publishing Corporation, New York, NY, 1984).

    Book  Google Scholar 

  11. Lanot, R., Zachary, D., Holder, F. & Meister, M. Postembryonic hematopoiesis in Drosophila. Dev. Biol. 230, 243–257 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Bulet, P., Hetru, C., Dimarcq, J. L. & Hoffmann, D. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23, 329–344 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Meister, M., Hetru, C. & Hoffmann, J. A. The antimicrobial host defense of Drosophila. Curr. Top. Microbiol. Immunol. 248, 17–36 (2000).

    CAS  PubMed  Google Scholar 

  14. Ashida, M. & Brey, P. T. Role of the integument in insect defense: pro-phenol oxidase cascade in the cuticular matrix. Proc. Natl Acad. Sci. USA 92, 10698–10702 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nappi, A. J. & Ottaviani, E. Cytotoxicity and cytotoxic molecules in invertebrates. Bioessays 22, 469–480 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Lagueux, M., Perrodou, E., Levashina, E. A., Capovilla, M. & Hoffmann, J. A. Constitutive expression of a complement-like protein in toll and JAK gain-of-function mutants of Drosophila. Proc. Natl Acad. Sci. USA 97, 11427–11432 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Levashina, E. A. et al. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104, 709–718 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Qiu, P., Pan, P. C. & Govind, S. A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 125, 1909–1920 (1998).

    CAS  PubMed  Google Scholar 

  19. Lebestky, T., Chang, T., Hartenstein, V. & Banerjee, U. Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science 288, 146–149 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Kappler, C. et al. Insect immunity. Two 17 bp repeats nesting a κ B-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteria-challenged Drosophila. EMBO J. 12, 1561–1568 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Engström, Y. et al. κB-like motifs regulate the induction of immune genes in Drosophila. J. Mol. Biol. 232, 327–333 (1993).

    Article  PubMed  Google Scholar 

  22. Hoffmann, J. A. & Reichhart, J. M. Drosophila immunity. Trends Cell Biol. 7, 309–316 (1997).

    Article  CAS  Google Scholar 

  23. Hoffmann, J. A., Kafatos, F. C., Janeway, C. A. & Ezekowitz, R. A. Phylogenetic perspectives in innate immunity. Science 284, 1313–1318 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Engström, Y. Induction and regulation of antimicrobial peptides in Drosophila. Dev. Comp. Immunol. 23, 345–358 (1999).

    Article  PubMed  Google Scholar 

  25. Belvin, M. P. & Anderson, K. V. A conserved signaling pathway: the Drosophila toll-dorsal pathway. Ann. Rev. Cell. Dev. Biol. 12, 393–416 (1996).

    Article  CAS  Google Scholar 

  26. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Lemaitre, B. et al. A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc. Natl Acad. Sci. USA 92, 9365–9469 (1995).

    Article  Google Scholar 

  28. Hashimoto, C., Hudson, K. L. & Anderson, K. V. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52, 269–279 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Letsou, A., Alexander, S., Orth, K. & Wasserman, S. A. Genetic and molecular characterization of tube, a Drosophila gene maternally required for embryonic dorsoventral polarity. Proc. Natl Acad. Sci. USA 88, 810–814 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Geisler, R., Bergmann, A., Hiromi, Y. & Nusslein-Volhard, C. cactus, a gene involved in dorsoventral pattern formation of Drosophila, is related to the IκB gene family of vertebrates. Cell 71, 613–621 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Kidd, S. Characterization of the Drosophila cactus locus and analysis of interactions between cactus and dorsal proteins. Cell 71, 623–635 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Shelton, C. A. & Wasserman, S. A. pelle encodes a protein kinase required to establish dorsoventral polarity in the Drosophila embryo. Cell 72, 515–525 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Morisato, D. & Anderson, K. V. The spatzle gene encodes a component of the extracellular signaling pathway establishing the dorsal-ventral pattern of the Drosophila embryo. Cell 76, 677–688 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Horng, T. & Medzhitov, R. Drosophila MyD88 is an adapter in the Toll signaling pathway. Proc. Natl Acad. Sci. USA 98, 12654–12658 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tauszig-Delamasure, S., Bilak, H., Capovilla, M., Hoffmann, J. A. & Imler, J. L. Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nature Immunol. 3, 91–97 (2002).

    Article  CAS  Google Scholar 

  36. Xiao, T., Towb, P., Wasserman, S. A. & Sprang, S. R. Three-dimensional structure of a complex between the death domains of Pelle and Tube. Cell 99, 545–555 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nusslein-Volhard, C., Lohs-Schardin, M., Sander, K. & Cremer, C. A dorso-ventral shift of embryonic primordia in a new maternal-effect mutant of Drosophila. Nature 283, 474–476 (1980).

    Article  CAS  PubMed  Google Scholar 

  38. Steward, R. Dorsal, an embryonic polarity gene in Drosophila, is homologous to the vertebrate proto-oncogene, c-rel. Science 238, 692–694 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. Ip, Y. T. et al. Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell 75, 753–763 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Dushay, M. S., Asling, B. & Hultmark, D. Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc. Natl Acad. Sci. USA 93, 10343–10347 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Manfruelli, P., Reichhart, J. M., Steward, R., Hoffmann, J. A. & Lemaitre, B. A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF. EMBO J. 18, 3380–3391 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meng, X., Khanuja, B. S. & Ip, Y. T. Toll receptor-mediated Drosophila immune response requires Dif, an NF-κB factor. Genes Dev. 13, 792–797 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rutschmann, S. et al. The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity 12, 569–580 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Tatei, K. & Levine, M. Specificity of Rel-inhibitor interactions in Drosophila embryos. Mol. Cell. Biol. 15, 3627–3634 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shen, B. & Manley, J. L. Phosphorylation modulates direct interactions between the Toll receptor, Pelle kinase and Tube. Development 125, 4719–4728 (1998).

    CAS  PubMed  Google Scholar 

  46. De Gregorio, E., Spellman, P. T., Rubin, G. M. & Lemaitre, B. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl Acad. Sci. USA 98, 12590–12595 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Irving, P. et al. A genome-wide analysis of immune responses in Drosophila. Proc. Natl Acad. Sci. USA 98, 15119–15124 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bergner, A. et al. Horseshoe crab coagulogen is an invertebrate protein with a nerve growth factor-like domain. Biol. Chem. 378, 283–287 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Mizuguchi, K., Parker, J. S., Blundell, T. L. & Gay, N. J. Getting knotted: a model for the structure and activation of Spatzle. Trends Biochem. Sci. 23, 239–242 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. LeMosy, E. K., Hong, C. C. & Hashimoto, C. Signal transduction by a protease cascade. Trends Cell Biol. 9, 102–107 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Levashina, E. A. et al. Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285, 1917–1919 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Michel, T., Reichhart, J. M., Royet, J. & Hoffmann, J. A. Drosophila Toll is activated by Gram-positive bacteria via a circulating peptidoglycan recognition protein. Nature 414, 756–759 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Tauszig, S., Jouanguy, E., Hoffmann, J. A. & Imler, J. L. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl Acad. Sci. USA 97, 10520–10525 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Keith, F. J. & Gay, N. J. The Drosophila membrane receptor Toll can function to promote cellular adhesion. EMBO J. 9, 4299–4306 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eldon, E. et al. The Drosophila 18 wheeler gene is required for morphogenesis and has striking similarities to Toll. Development 120, 885–899 (1994).

    CAS  PubMed  Google Scholar 

  56. Halfon, M. S., Hashimoto, C. & Keshishian, H. The Drosophila toll gene functions zygotically and is necessary for proper motoneuron and muscle development. Dev. Biol. 169, 151–167 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Stoven, S., Ando, I., Kadalayil, L., Engstrom, Y. & Hultmark, D. Activation of the Drosophila NF-κB factor Relish by rapid endoproteolytic cleavage. EMBO Rep. 1, 347–352 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rutschmann, S. et al. Role of Drosophila IKK γ in a toll-independent antibacterial immune response. Nature Immunol. 1, 342–347 (2000).

    Article  CAS  Google Scholar 

  59. Lu, Y., Wu, L. P. & Anderson, K. V. The antibacterial arm of the Drosophila innate immune response requires an IκB kinase. Genes Dev. 15, 104–110 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Silverman, N. et al. A Drosophila IκB kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev. 14, 2461–2471 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Georgel, P. et al. Drosophila Immune Deficiency (IMD) is a Death Domain Protein that Activates the Antibacterial Defence and Can Promote Apoptosis. Dev. Cell 1, 503–514 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Elrod-Erickson, M., Mishra, S. & Schneider, D. Interactions between the cellular and humoral immune responses in Drosophila. Curr. Biol. 10, 781–784 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist gram-negative bacterial infection. EMBO Rep. 1, 353–358 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vidal, S. et al. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB-dependent innate immune responses. Genes Dev. 15, 1900–1912 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lemaitre, B., Reichhart, J. M. & Hoffmann, J. A. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl Acad. Sci. USA 94, 14614–14619 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Han, Z. S. & Ip, Y. T. Interaction and specificity of Rel-related proteins in regulating Drosophila immunity gene expression. J. Biol. Chem. 274, 21355–21361 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Brey, P. T. et al. Role of the integument in insect immunity: epicuticular abrasion and induction of cecropin synthesis in cuticular epithelial cells. Proc. Natl Acad. Sci. USA 90, 6275–6279 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, G., Handel, K. & Roth, S. The maternal NF-κB/dorsal gradient of Tribolium castaneum: dynamics of early dorsoventral patterning in a short-germ beetle. Development 127, 5145–5156 (2000).

    CAS  PubMed  Google Scholar 

  69. Luo, C. & Zheng, L. Independent evolution of Toll and related genes in insects and mammals. Immunogenetics 51, 92–98 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Escoubas, J. M. et al. Oyster IKK-like protein shares structural and functional properties with its mammalian homologues. FEBS Lett. 453, 293–298 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Barillas-Mury, C. et al. Immune factor Gambif1, a new rel family member from the human malaria vector, Anopheles gambiae. EMBO J. 15, 4691–4701 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shiraishi, H. et al. Molecular cloning and characterization of SRAM, a novel insect rel/ankyrin-family protein present in nuclei. J. Biochem. (Tokyo) 127, 1127–1134 (2000).

    Article  CAS  Google Scholar 

  73. Aderem, A. & Ulevitch, R. J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Medzhitov, R. & Janeway, C. Jr Innate immune recognition: mechanisms and pathways. Immunol. Rev. 173, 89–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunol. 2, 675–680 (2001).

    Article  CAS  Google Scholar 

  76. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Kimbrell, D. A. & Beutler, B. The evolution and genetics of innate immunity. Nature Rev. Genet. 2, 256–267 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Silverman, N. & Maniatis, T. NF-κB signaling pathways in mammalian and insect innate immunity. Genes Dev. 15, 2321–2342 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Locksley, R. M., Killeen, N. & Lenardo, M. J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Hetru, D. Ferrandon, J. L. Imler, M. Meister, J. Royet, P. Bulet and P. Lygoxigakis for helpful discussions and C. Janeway, F. Kafatos and A. Ezekowitz for long-standing and stimulating interactions. Supported by CNRS, the NIH, the European Union, Exelixis (San Francisco) and EntoMed (Strasbourg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jules A. Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffmann, J., Reichhart, JM. Drosophila innate immunity: an evolutionary perspective. Nat Immunol 3, 121–126 (2002). https://doi.org/10.1038/ni0202-121

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0202-121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing