Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neutrophil direction sensing and superoxide production linked by the GTPase-activating protein GIT2

This article has been updated

Abstract

In neutrophils, superoxide anion production generally accompanies chemotaxis and functions in killing invading pathogens. The GIT2 GTPase-activating protein binds to the guanine nucleotide–exchange factor αPIX. Here we show that GIT2 was necessary for directional chemotaxis and for the suppression of superoxide production in G protein–coupled receptor–stimulated neutrophils. GIT2 was also necessary for the orientation of superoxide production toward chemoattractant sources. GIT2 suppressed the activity of ADP ribosylation factor 1 and was a component of the Gβγ subunit–mediated direction-sensing machinery 'downstream' of G protein–coupled receptor signaling. This study establishes a function for GIT2 in linking chemotaxis and superoxide production in neutrophils and shows that loss of GIT2 in vivo leads to an immunodeficient state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immune effects of Git2 deficiency.
Figure 2: Expression of Git1 and Git2.
Figure 3: Git2 in neutrophil chemotaxis.
Figure 4: Impaired GPCR-coupled direction sensing in Git2−/− neutrophils.
Figure 5: Misoriented hyperproduction of superoxide in Git2−/− neutrophils.
Figure 6: Activity of small GTPases.

Similar content being viewed by others

Change history

  • 02 June 2006

    In the version of this article initially published online, the word "in" is missing on page 3, column 2, line 21; this should read "normal phosphorylation of PAK1 in Git2+/− neutrophils (Fig. 4d)." Also, in the supplementary information, the Greek mu symbol is missing from the units. The errors have been corrected for all versions of the article.

References

  1. Cross, A.R. & Segel, A.W. The NADPH oxidase of professional phagocytes: prototype of the NOX electron transport chain systems. Biochim. Biophys. Acta 1657, 1–22 (2004).

    Article  CAS  Google Scholar 

  2. Murphy, P.M. The molecular biology of leukocyte chemoattractant receptors. Annu. Rev. Immunol. 12, 593–633 (1994).

    Article  CAS  Google Scholar 

  3. Li, Z. et al. Directional sensing requires Gβγ-mediated PAK1 and PIXα-dependent activation of Cdc42. Cell 114, 215–227 (2003).

    Article  CAS  Google Scholar 

  4. Bokoch, G.M. Biology of the p21-activated kinase. Annu. Rev. Biochem. 72, 743–781 (2003).

    Article  CAS  Google Scholar 

  5. Dana, R.R., Eigsti, C., Holmes, K.L. & Leto, T. A regulatory role for ADP-ribosylation factor 6 (ARF6) in activation of the phagocyte NADPH oxidase. J. Biol. Chem. 275, 32566–32571 (2000).

    Article  CAS  Google Scholar 

  6. Káldi, K. et al. Contribution of phopholipase D and a brefeldin A-sensitive ARF to chemoattractant-induced superoxide production and secretion of human neutrophils. J. Leukoc. Biol. 71, 695–700 (2002).

    PubMed  Google Scholar 

  7. Bagrodia, S. et al. A tyrosine-phosphorylated protein that binds to an important regulatory region on the cool family of p21-activated kinase-binding proteins. J. Biol. Chem. 274, 22393–22400 (1999).

    Article  CAS  Google Scholar 

  8. Premont, R.T., Claing, A., Vitale, N., Perry, S.J. & Lefkowits, R.J. The GIT family of ADP-ribosylation factor GTPase-activating proteins. Functional diversity of GIT2 through alternative splicing. J. Biol. Chem. 275, 22373–22380 (2000).

    Article  CAS  Google Scholar 

  9. Schmalzigaug, R. & Premont, R. in ARF Family GTPases 159–183 (Kluwer Academic, Dordrecht, 2003).

    Google Scholar 

  10. Zhao, Z.S., Manser, E., Loo, T.H. & Lim, L. Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol. Cell. Biol. 20, 6354–6363 (2000).

    Article  CAS  Google Scholar 

  11. Romani, L. Immunity to fungal infections. Nat. Rev. Immunol. 4, 1–23 (2004).

    Article  Google Scholar 

  12. Boyden, S. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 115, 453–466 (1962).

    Article  CAS  Google Scholar 

  13. Hirsch, E. et al. Central role for G protein-coupled phosphoinositide 3-kinase γ in inflammation. Science 287, 1049–1053 (2000).

    Article  CAS  Google Scholar 

  14. Li, Z. et al. Roles of PLC-β2 and -β3 and PI3Kγ in chemoattractant-mediated signal transduction. Science 287, 1046–1049 (2000).

    Article  CAS  Google Scholar 

  15. Sasaki, T. et al. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science 287, 1040–1046 (2000).

    Article  CAS  Google Scholar 

  16. Zigmond, S.H. Orientation chamber in chemotaxis. Methods Enzymol. 162, 65–72 (1988).

    Article  CAS  Google Scholar 

  17. Phee, H., Abraham, R.T. & Weiss, A. Dynamic recruitment of PAK1 to the immunological synapse is mediated by PIX independently of SLP-76 and Vav1. Nat. Immunol. 6, 608–617 (2005).

    Article  CAS  Google Scholar 

  18. Weiner, O.D. et al. A PtdInsP3- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat. Cell Biol. 4, 509–513 (2002).

    Article  CAS  Google Scholar 

  19. Wang, F. et al. Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nat. Cell Biol. 4, 513–518 (2002).

    Article  CAS  Google Scholar 

  20. Hannigan, M. et al. Neutrophils lacking phosphoinositide 3-kinase γ show loss of directionality during N-formyl-Met-Leu-Phe-induced chemotaxis. Proc. Natl. Acad. Sci. USA 99, 3603–3608 (2002).

    Article  CAS  Google Scholar 

  21. Brazil, D.P., Yang, Z.Z. & Hemmings, B.A. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem. Sci. 29, 233–242 (2004).

    Article  CAS  Google Scholar 

  22. Dekker, L.V. & Segal, A.W. Signals to move cells. Science 287, 982–985 (2000).

    Article  CAS  Google Scholar 

  23. Brock, C. et al. Roles of Gβγ in membrane recruitment and activation of p110γ/p101 phosphoinositide 3-kinase γ. J. Cell Biol. 160, 89–99 (2003).

    Article  CAS  Google Scholar 

  24. Chardin, P. & McCormick, F. Brefeldin A: the advantage of being uncompetitive. Cell 97, 153–155 (1999).

    Article  CAS  Google Scholar 

  25. Mazaki, Y. et al. An ADP-ribosylation factor GTPase-activating protein Git2-short/KIAA0148 is involved in subcellular localization of paxillin and actin cytoskeletal organization. Mol. Biol. Cell 12, 645–662 (2001).

    Article  CAS  Google Scholar 

  26. Vitale, N. et al. GIT proteins, A novel family of phosphatidylinositol 3,4,5-trisphosphate-stimulated GTPase-activating proteins for ARF6. J. Biol. Chem. 275, 13901–13906 (2000).

    Article  CAS  Google Scholar 

  27. Zhang, Q., Cox, D., Tseng, C.C., Donaldson, J.G. & Greenberg, S. A requirement for ARF6 in Fcγ receptor-mediated phagocytosis in macrophages. J. Biol. Chem. 273, 19977–19981 (1998).

    Article  CAS  Google Scholar 

  28. Li, S. et al. Chemoattractant-stimulation Rac activation in wild-type and Rac2-deficient murine neutrophils: preferential activation of Rac2 and Rac2 gene dosage effect on neutrophil functions. J. Immunol. 169, 5043–5051 (2002).

    Article  Google Scholar 

  29. Filippi, M.D. et al. Localization of Rac2 via the C terminus and aspartic acid 150 specifies superoxide generation, actin polarity and chemotaxis in neutrophils. Nat. Immunol. 5, 744–751 (2004).

    Article  CAS  Google Scholar 

  30. Roberts, A.W. et al. Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 10, 183–196 (1999).

    Article  CAS  Google Scholar 

  31. Glogauer, M. et al. Rac1 deletion in mouse neutrophils has selective effects on neutrophil functions. J. Immunol. 170, 5652–5657 (2003).

    Article  CAS  Google Scholar 

  32. Sun, C.X. et al. Rac1 is the small GTPase responsible for regulating the neutrophil chemotaxis compass. Blood 104, 3758–3765 (2004).

    Article  CAS  Google Scholar 

  33. Roth, M.G. in GTPase 176–197 (Oxford Univ Press, New York, 2000).

    Google Scholar 

  34. Feng, Q., Baird, D. & Cerione, R.A. Novel regulatory mechanisms for the Dbl family guanine nucleotide exchange factor Cool-2/α-Pix. EMBO J. 23, 3492–3504 (2004).

    Article  CAS  Google Scholar 

  35. Comer, F.I. & Parent, C.A. PI 3-kinases and PTEN: how opposites chemoattract. Cell 109, 541–544 (2002).

    Article  CAS  Google Scholar 

  36. Eichinger, L. et al. The genome of the social amoeba Dictyostelium discoideum. Nature 435, 43–57 (2005).

    Article  CAS  Google Scholar 

  37. Yagi, T. et al. A novel ES cell line, TT2, with high germline-differentiating potency. Anal. Biochem. 214, 70–76 (1993).

    Article  CAS  Google Scholar 

  38. Suda, Y. et al. Driven by the same Ig enhancer and SV40 T promoter ras induced lung adenomatous tumors, myc induced pre-B cell lymphomas and SV40 large T gene a variety of tumors in transgenic mice. EMBO J. 6, 4055–4065 (1987).

    Article  CAS  Google Scholar 

  39. Kitamura, H. et al. IL-6-STAT3 controls intracellular MHC class II αβ dimmer level through cathepsin S activity in dendritic cells. Immunity 23, 491–502 (2005).

    Article  CAS  Google Scholar 

  40. Bellocchio, S. et al. The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J. Immunol. 172, 3059–3069 (2004).

    Article  CAS  Google Scholar 

  41. Grocott, R.G. A stain for fungi in tissue sections and smears using Gomori's methenamine-silver nitrate technic. Am. J. Clin. Pathol. 25, 975–979 (1955).

    Article  CAS  Google Scholar 

  42. Romano, M. et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6, 315–325 (1997).

    Article  CAS  Google Scholar 

  43. Mócsai, A., Ligeti, E., Lowell, C.A. & Berton, G. Adhesion-dependent degranulation of neutrophils requires the Src family kinases Fgr and Hck. J. Immunol. 162, 1120–1126 (1999).

    Google Scholar 

  44. Lowell, C.A., Fumagalli, L. & Berton, G. Deficiency of Src family kinases p59/61hck and p58c-fgr results in defective adhesion-dependent neutrophil functions. J. Cell Biol. 133, 895–910 (1996).

    Article  CAS  Google Scholar 

  45. Mayer, B.J., Hirai, H. & Sakai, R. Evidence that SH2 domains promote processive phosphorylation by protein-tyrosine kinases. Curr. Biol. 5, 296–305 (1995).

    Article  CAS  Google Scholar 

  46. Hirai, K., Moriguchi, K. & Wang, G.Y. Human neutrophils produce free radicals from the cell-zymosan interface during phagocytosis and from the whole plasma membrane when stimulated with calcium ionophore A23187. Exp. Cell Res. 194, 19–27 (1991).

    Article  CAS  Google Scholar 

  47. Gakidis, M.A. et al. Vav GEFs are required for β2 integrin-dependent functions of neutrophils. J. Cell Biol. 166, 273–282 (2004).

    Article  CAS  Google Scholar 

  48. Luton, F. et al. EFA6, exchange factor for ARF6, regulates the actin cytoskeleton and associated tight junction in response to E-cadherin engagement. Mol. Biol. Cell 15, 1134–1145 (2004).

    Article  CAS  Google Scholar 

  49. Benard, V. & Bokoch, G.M. Assay of Cdc42, Rac, and Rho GTPase activation by affinity methods. Methods Enzymol. 345, 349–359 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Hiraishi, Y. Shibata and M. Iwahara for help; H.A. Popiel (Osaka University, Suita, Japan) for critical reading of the manuscript; and R.Y. Tsien (University of California, La Jolla, California) for monomeric red fluorescent protein. Supported by Grants-In-Aid from the Ministry of Education, Science, Sports and Culture of Japan (16370090 to H.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisataka Sabe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Targeting of the Git2 gene by homologous recombination (PDF 287 kb)

Supplementary Fig. 2

Requirement of GAP activity for GIT2 function. (PDF 474 kb)

Supplementary Fig. 3

Subcellular localization of Rac1 and Rac2. (PDF 2124 kb)

Supplementary Table 1

Blood parameters of Git2+/− and Git2−/− mice. (PDF 17 kb)

Supplementary Table 2

DNA sequence of PCR primers. (PDF 25 kb)

Supplementary Methods (PDF 118 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazaki, Y., Hashimoto, S., Tsujimura, T. et al. Neutrophil direction sensing and superoxide production linked by the GTPase-activating protein GIT2. Nat Immunol 7, 724–731 (2006). https://doi.org/10.1038/ni1349

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1349

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing