Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD39 is the dominant Langerhans cell–associated ecto-NTPDase: Modulatory roles in inflammation and immune responsiveness

Abstract

CD39, the endothelial ecto-nucleoside triphosphate diphosphohydrolase (NTPDase), regulates vascular inflammation and thrombosis by hydrolyzing ATP and ADP. Although ecto-NTPDase activities have been used as a marker of epidermal dendritic cells (DCs) known as Langerhans cells, the identity and function of these activities remain unknown. Here we report that Langerhans cells in CD39−/− mice express no detectable ecto-NTPDase activity. Irritant chemicals triggered rapid ATP and ADP release from keratinocytes and caused exacerbated skin inflammation in CD39−/− mice. Paradoxically, T cell–mediated allergic contact hypersensitivity was severely attenuated in CD39−/− mice. As to mechanisms, T cells increased pericellular ATP concentrations upon activation, and CD39−/− DCs showed ATP unresponsiveness (secondary to P2-receptor desensitization) and impaired antigen-presenting capacity. Our results show opposing outcomes of CD39 deficiency in irritant versus allergic contact dermatitis, reflecting its diverse roles in regulating extracellular nucleotide-mediated signaling in inflammatory responses to environmental insults and DC–T cell communication in antigen presentation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lack of LC-associated ecto-NTPDase activities in CD39−/− mice.
Figure 2: CD39 mRNA and protein expression by LCs.
Figure 3: Nucleotide release from keratinocytes following in vitro treatment with skin-irritant chemicals.
Figure 4: Augmented skin inflammatory responses in CD39−/− mice.
Figure 5: Attenuated immune responses in CD39-deficient mice.
Figure 6: P2 receptor desensitization in CD39−/− DCs.

Similar content being viewed by others

References

  1. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  CAS  Google Scholar 

  2. Wolff, K. & Winkelmann, R.K. Ultrastructural localization of nucleoside triphosphatase in Langerhans cells. J. Invest. Dermatol. 48, 50–54 (1967).

    Article  CAS  Google Scholar 

  3. Chaker, M.B., Tharp, M.D. & Bergstresser, P.R. Rodent epidermal Langerhans cells demonstrate greater histochemical specificity for ADP than for ATP and AMP. J. Invest. Dermatol. 82, 496–500 (1984).

    Article  CAS  Google Scholar 

  4. Ralevic, V. & Burnstock, G. Receptors for purines and pyrimidines. Pharmacol. Rev. 50, 413–492 (1998).

    CAS  PubMed  Google Scholar 

  5. Plesner, L. Ecto-ATPases: identities and functions. Int. Rev. Cytol. 158, 141–214 (1995).

    Article  CAS  Google Scholar 

  6. Zimmermann, H. 5′-Nucleotidase: molecular structure and functional aspects. Biochem. J. 285, 345–365 (1992).

    Article  CAS  Google Scholar 

  7. Maliszewski, C.R. et al. The CD39 lymphoid cell activation antigen. Molecular cloning and structural characterization. J. Immunol. 153, 3574–3583 (1994).

    CAS  PubMed  Google Scholar 

  8. Kansas, G.S., Wood, G.S. & Tedder, T.F. Expression, distribution, and biochemistry of human CD39. Role in activation-associated homotypic adhesion of lymphocytes. J. Immunol. 146, 2235–2244 (1991).

    CAS  PubMed  Google Scholar 

  9. Kaczmarek, E. et al. Identification and characterization of CD39/vascular ATP diphosphohydrolase. J. Biol. Chem. 271, 33116–33122 (1996).

    Article  CAS  Google Scholar 

  10. Wang, T.F. & Guidotti, G. CD39 is an ecto-(Ca2+, Mg2+)-apyrase. J. Biol. Chem. 271, 9898–9901 (1996).

    Article  CAS  Google Scholar 

  11. Zimmermann, H. Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch. Pharmacol. 362, 299–309 (2000).

    Article  CAS  Google Scholar 

  12. Enjyoji, K. et al. Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nature Med. 5, 1010–1017 (1999).

    Article  CAS  Google Scholar 

  13. Marcus, A.J. et al. The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39. J. Clin. Invest. 99, 1351–1360 (1997).

    Article  CAS  Google Scholar 

  14. Gayle, R.B. III et al. Inhibition of platelet function by recombinant soluble ecto-ADPase/CD39. J. Clin. Invest. 101, 1851–1859 (1998).

    Article  CAS  Google Scholar 

  15. Love-Schimenti, C.D. & Kripke, M.L. Dendritic epidermal T cells inhibit T cell proliferation and may induce tolerance by cytotoxicity. J. Immunol. 153, 3450–3456 (1994).

    CAS  PubMed  Google Scholar 

  16. Filippini, A., Taffs, R.E. & Sitkovsky, M.V. Extracellular ATP in T-lymphocyte activation: possible role in effector functions. Proc. Natl. Acad. Sci. USA 87, 8267–8271 (1990).

    Article  CAS  Google Scholar 

  17. Di Virgilio, F. et al. Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood 97, 587–600 (2001).

    Article  CAS  Google Scholar 

  18. Girolomoni, G. et al. Epidermal Langerhans cells are resistant to the permeabilizing effects of extracellular ATP: in vitro evidence supporting a protective role of membrane ATPase. J. Invest. Dermatol. 100, 282–287 (1993).

    Article  CAS  Google Scholar 

  19. Di Virgilio, F. The P2Z purinoceptor: an intriguing role in immunity, inflammation and cell death. Immunol. Today 16, 524–528 (1995).

    Article  CAS  Google Scholar 

  20. Coutinho-Silva, R. et al. P2Z/P2X7 receptor-dependent apoptosis of dendritic cells. Am. J. Physiol. 276, C1139–C1147 (1999).

    Article  CAS  Google Scholar 

  21. Nihei, O.K., de Carvalho, A.C., Savino, W. & Alves, L.A. Pharmacologic properties of P2Z /P2X7 receptor characterized in murine dendritic cells: role on the induction of apoptosis. Blood 96, 996–1005 (2000).

    CAS  PubMed  Google Scholar 

  22. Ferrari, D. et al. The P2 purinergic receptors of human dendritic cells: identification and coupling to cytokine release. FASEB J. 14, 2466–2476 (2000).

    Article  CAS  Google Scholar 

  23. Pillai, S. & Bikle, D.D. Adenosine triphosphate stimulates phosphoinositide metabolism, mobilizes intracellular calcium, and inhibits terminal differentiation of human epidermal keratinocytes. J. Clin. Invest. 90, 42–51 (1992).

    Article  CAS  Google Scholar 

  24. Pillai, S. et al. 1,25-Dihydroxyvitamin D3 upregulates the phosphatidylinositol signaling pathway in human keratinocytes by increasing phospholipase C levels. J. Clin. Invest. 96, 602–609 (1995).

    Article  CAS  Google Scholar 

  25. Suter, M.M. et al. Extracellular ATP and some of its analogs induce transient rises in cytosolic free calcium in individual canine keratinocytes. J. Invest. Dermatol. 97, 223–229 (1991).

    Article  CAS  Google Scholar 

  26. Mutini, C. et al. Mouse dendritic cells express the P2X7 purinergic receptor: characterization and possible participation in antigen presentation. J. Immunol. 163, 1958–1965 (1999).

    CAS  PubMed  Google Scholar 

  27. Liu, Q.H. et al. Expression and a role of functionally coupled P2Y receptors in human dendritic cells. FEBS Lett. 445, 402–408 (1999).

    Article  CAS  Google Scholar 

  28. Berchtold, S. et al. Human monocyte derived dendritic cells express functional P2X and P2Y receptors as well as ecto-nucleotidases. FEBS Lett. 458, 424–428 (1999).

    Article  CAS  Google Scholar 

  29. Marriott, I., Inscho, E.W. & Bost, K.L. Extracellular uridine nucleotides initiate cytokine production by murine dendritic cells. Cell. Immunol. 195, 147–156 (1999).

    Article  CAS  Google Scholar 

  30. Khakh, B.S. Molecular physiology of P2X receptors and ATP signalling at synapses. Nature Rev. Neurosci. 2, 165–174 (2001).

    Article  CAS  Google Scholar 

  31. Sellers, L.A. et al. Adenosine nucleotides acting at the human P2Y1 receptor stimulate mitogen-activated protein kinases and induce apoptosis. J. Biol. Chem. 276, 16379–16390 (2001).

    Article  CAS  Google Scholar 

  32. Burnett, C.A., Lushniak, B.D., McCarthy, W. & Kaufman, J. Occupational dermatitis causing days away from work in U.S. private industry, 1993. Am. J. Ind. Med. 34, 568–573 (1998).

    Article  CAS  Google Scholar 

  33. Gocinski, B.L. & Tigelaar, R.E. Roles of CD4+ and CD8+ T cells in murine contact sensitivity revealed by in vivo monoclonal antibody depletion. J. Immunol. 144, 4121–4128 (1990).

    CAS  PubMed  Google Scholar 

  34. Xu, H., DiIulio, N.A. & Fairchild, R.L. T cell populations primed by hapten sensitization in contact sensitivity are distinguished by polarized patterns of cytokine production: interferon γ-producing (Tc1) effector CD8+ T cells and interleukin (IL) 4/IL-10-producing (Th2) negative regulatory CD4+ T cells. J. Exp. Med. 183, 1001–1012 (1996).

    Article  CAS  Google Scholar 

  35. Xu, S. et al. Successive generation of antigen-presenting, dendritic cell lines from murine epidermis. J. Immunol. 154, 2697–2705 (1995).

    CAS  PubMed  Google Scholar 

  36. Matsue, H. et al. Induction of antigen-specific immunosuppression by CD95L cDNA-transfected "killer" dendritic cells. Nature Med. 5, 930–937 (1999).

    Article  CAS  Google Scholar 

  37. Matsue, H., Bergstresser, P.R. & Takashima, A. Keratinocyte-derived IL-7 serves as a growth factor for dendritic epidermal T cells in mice. J. Immunol. 151, 6012–6019 (1993).

    CAS  PubMed  Google Scholar 

  38. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).

    Article  CAS  Google Scholar 

  39. Kumamoto, T. et al. Induction of tumor-specific protective immunity by in situ Langerhans cell vaccine. Nature Biotechnol. 20, 64–69 (2002).

    Article  CAS  Google Scholar 

  40. Mummert, M.E. et al. Development of a peptide inhibitor or hyaluronan-mediated leukocyte trafficking. J. Exp. Med. 192, 769–779 (2000).

    Article  CAS  Google Scholar 

  41. Abeyama, K. et al. A role for NF-κB-dependent gene transactivation in sunburn. J. Clin. Invest. 105, 1751–1759 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Ellinger, D. Edelbaum and P. Adcock for assistance. This work was supported by NIH grants (S.C.R. and A.T), the Dermatology Foundation fellowship award (N.M.), the Canadian Institutes of Health Research (J.S.), and the Centre de Recherches et d'Investigations Epidermiques et Sensorielles (CE.R.I.E.S.) award (A.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Takashima.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizumoto, N., Kumamoto, T., Robson, S. et al. CD39 is the dominant Langerhans cell–associated ecto-NTPDase: Modulatory roles in inflammation and immune responsiveness. Nat Med 8, 358–365 (2002). https://doi.org/10.1038/nm0402-358

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0402-358

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing