Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transforming growth factor-β1 is a new form of tumor suppressor with true haploid insufficiency

Components of the transforming growth factor-β (TGF-β) signal pathway function as classic tumor suppressors, but the role of the TGF-βs themselves is less clear. Here we show that mice heterozygous for deletion of the TGF-β1 gene express only 10–30% of wild-type TGF-β1 protein levels. Although grossly normal, these mice have a subtly altered proliferative phenotype, with increased cell turnover in the liver and lung. Treatment of these mice with chemical carcinogens resulted in enhanced tumorigenesis when compared with wild-type littermates. However, tumors in the heterozygous mice did not lose the remaining wild-type TGF-β1 allele, indicating that the TGF-β1 ligand is a new form of tumor suppressor that shows true haploid insufficiency in its ability to protect against tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Roberts, A.B. & Sporn, M.B. in: Handbook of Experimental Pharmacology. Peptide Growth Factors and Their Receptors Vol 95/I (eds. Sporn, M.B. & Roberts, A.B) 419–472 (Springer-Verlag, Berlin, 1990).

    Book  Google Scholar 

  2. Sporn, M.B. & Roberts, A.B. Autocrine growth factors and cancer. Nature 313, 745–747 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Fynan, T.M. & Reiss, M. Resistance to inhibition of cell growth by transforming growth factor-β and its role in oncogenesis. Crit. Rev. Oncog. 4, 493–540 (1993).

    CAS  PubMed  Google Scholar 

  4. Brattain, M.C., Markowitz, S.D. & Willson, J.K. The type II transforming growth factor-β1 receptor as a tumor-suppressor gene. Curr. Opin. Oncol. 8, 49–53 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Markowitz, S. et al. Inactivation of the type II TGF-β receptor in colon cancer cells with micrasatellite instability. Science 268, 1336–1338 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Hahn, S.A. et al. DPC4, a candidate tumor suppressor gene at human chromosomel 8q21.1. Science 271, 350–353 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. De Souza, A.T., Hankins, C.R., Washington, M.K., Orton, T.C. & Jirtle, R.L. M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity. Nature Genet. 11, 447–149 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Wu, S.P. et al. TCF-β1 is an autocrine-negative growth regulator of human colon carcinoma FET cells in vivo as revealed by transfection of an antisense expression vector. J. Cell Biol. 116, 187–196 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Huang, F., Newman, E., Theodorescu, D., Kerbel, R.S. & Friedman, E. Transforming growth factor β1 (TGFβ1) is an autocrine positive regulator of colon carcinoma U9 cells in vivo as shown by transfection of a TGF-β1 antisense expression plasmid. Cell Growth Differ. 6, 1635–1642 (1995).

    CAS  PubMed  Google Scholar 

  10. Corsch, S.M., Memoli, V.A., Stukel, T.A., Gold, L.I. & Arrick, B.A. Immunohistochemical staining for transforming growth factor β1 associates with disease progression in human breast cancer. Cancer Res, 52, 6949–6952 (1992).

    Google Scholar 

  11. Tsushima, H. et al. High levels of transforming growth factor β1 in patients with colorectal cancer: association with disease progression. Gastroenterology 110, 375–382 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Fearon, E.R. Human cancer syndromes: clues to the origin and nature of cancer. Science 278, 1043–1050 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Kulkami, A.B. et al. Transforming growth factor (11 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl. Acad. Sci. USA, 90, 770–774 (1993).

    Article  Google Scholar 

  14. Shull, M.M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carr, B.I., Hayashi, I., Branum, E.L. & Moses, H.L. Inhibition of DNA synthesis in rat hepatocytes by platelet- derived type p transforming growth factor. Cancer Res. 46, 2330–2334 (1986).

    CAS  PubMed  Google Scholar 

  16. Russell, W.E., Coffey, R.J.Jr., Ouellette, A.J. & Moses, H.L. Type β transforming growth factor reversibly inhibits the early proliferative response to partial hepatectomy in the rat. Proc. Natl. Acad. Sci. USA 85, 5126–5130 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oberhammer, F.A. et al. Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor β1. Proc. Natl. Acad. Sci. USA, 89, 5408–5412(1992).

  18. Evan, G.I. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell, 69, 119–128 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Jacks, T. et al. Effects of an Rb mutation in the mouse. Nature 359, 295–300 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Naik, P., Karrim, J. & Hanahan, D. The rise and fall of apoptosis during multistage tumorigenesis: down-modulation contributes to tumor progression from angiogenic progenitors. Genes Dev. 10, 2105–2116 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Crocker, T.T., Teeter, A. & Nielsen, B. Postnatal cellular proliferation in mouse and hamster lung. Cancer Res. 30, 357–361 (1970).

    CAS  PubMed  Google Scholar 

  22. Ravitz, M.J. & Wenner, C.E. Cyclin-dependent kinase regulation during Gl phase and cell cycle regulation by TGF-β. Adv. Cancer Res. 71, 165–207 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. lavarone, A. & Massague, J. Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-β in cells lacking the CDK inhibitor p15. Nature 387, 417–422 (1997)

    Article  Google Scholar 

  24. Border, W.A. & Ruoslahti, E. Transforming growth factor-β in disease: the dark side of tissue repair. J. Clin. Invest. 90, 1–7 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nathan, C. & Sporn, M. Cytokines in Context. J. Cell Biol. 113:5, 981–986 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Diwan, B.A., Rice, J.M., Ward, J.M., Ohshima, M. & Lynch, P.H. Inhibition by phenobarbital and lack of effect of amobarbital on the development of liver tumors induced by N-Nitrosodiethylamine in juvenile B6C3F1 mice. Cancer Lett. 23, 223–234 (1984).

    Article  CAS  PubMed  Google Scholar 

  27. Glick, A.B. et al. Loss of expression of transforming growth factor β in skin and skin tumors is associated with hyperproliferation and a high risk for malignant conversion. Proc. Natl. Acad. Sci. USA, 90, 6076–6080 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Click, A.B. et al. Targeted deletion of the TCF-β1 gene causes rapid progression to squamous cell carcinoma. Genes Dev. 8, 2429–2440 (1994).

    Article  Google Scholar 

  29. Glick, A.B., Weinberg, W.C., Wu, I.-H., Quan, W. & Yuspa, S.H. Transforming growth factor β1 suppresses genomic instability independent of a C, arrest, p53 and Rb. Cancer Res. 56, 3645–3650 (1996).

    CAS  PubMed  Google Scholar 

  30. Cui, W. et al. TCF-β1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86, 531–542 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Torre-Amione, C. et al. A highly immunogenic tumor transfected with a murine transforming growth factor type β1 cDNA escapes immune surveillance. Proc. Natl. Acad. Sci. USA, 87, 1486–1490 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fajardo, L.F., Prionas, S.D., Kwan, H.H., Kowalski, J. & Allison, A.C. Transforming growth factor β1 induces angiogenesis in vivo with a threshold pattern. Lab. Invest. 74, 600–608 (1996).

    CAS  PubMed  Google Scholar 

  33. Markowitz, S.D. & Roberts, A.B. Tumor suppressor activity of the TGF-β pathway in human cancers. Cytokine Growth Factor Rev. 7, 93–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Bottinger, E.P., Jakubczak, J.L., Haines, D.C., Bagnall, K. & Wakefield, L.M. Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor β receptor show enhanced tumorigenesis in the mammary gland and iung in response to the carcinogen 7,12-dimethylbenz-[a]-anthrancene. Cancer Res. 57, 5564–5570 (1997).

    CAS  PubMed  Google Scholar 

  35. Maroulakou, I.G., Anver, M., Garett, L., & Green, J.E. Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proc. Natl. Acad. Sci. USA, 91, 11236–11240 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tashiro, H. et al. Altered plasma levels of cytokines in patients with ischemic heart disease. Coron. Artery Dis. 8, 143–147 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Cambien, F. et al. Polymorphisms of the transforming growth factor-β1 gene in relation to myocardial infarction and blood pressure. The Etude Cas-Temoin de I'lnfarctus du Myocarde (ECTIM) Study. Hypertension, 28, 881–887 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Langdahl, B.L., Knudsen, |.Y., lensen, H.K., Gregersen, N. & Eriksen, E.F. A sequence variation: 713-8delC in the transforming growth factor-β1 gene has higher prevalence in osteoporotic women than in normal women and is associated with very low bone mass in osteoporotic women and increased bone turnover in both osteoporotic and normal women. Bone 20, 289–294 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Firth, C.H., Ward, J.M & Turuson, V.S. in Pathology of Tumors in Laboratory Animals. Vol.2. Tumours of the Mouse, 2nd edn. (eds. V. Turosoy & U. Mohr) 223–269 (IARC Scientific Publications, 1984).

    Google Scholar 

  40. Rehm, S., Werd, J.M. & Sabs, B. in Pathology of Tumors in Laboratory Animals. Vol.2. Tumours of the Mouse, 2nd edn. (eds. V. Turosov & U. Mohr) 325–355 (IARC Publications, Lyon, France, 1984)

    Google Scholar 

  41. Danielpour, D. & Roberts, A.B. Specific and sensitive quantitation of transforming growth factor P3 by sandwich enzyme-linked immunosorbent assay. J. Immunol. Methods, 180, 265–272 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Danielpour, D. et al. Sandwich enzyme-linked immunosorbent assays (SELISAs) quantitate and distinguish two forms of transforming growth factor-β (TGF-β1 and TGF-β2) in complex biological fluids. Growth Factors, 2, 61–71 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Church, G.M. & Gilbert, W. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991–1995 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jakowlew, S.B., Moody, T.W., You, L. & Mariano, J.M. Reduction of transforming growth factor-β type II receptor in mouse lung carcinogenesis. Mol. Carcinog. 22, 46–56 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Flanders, K.C. et al. Transforming growth factor-β1: histochemical localization with antibodies to different epitopes. J. Cell Biol. 108, 653–660 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, B., Böttinger, E., Jakowlew, S. et al. Transforming growth factor-β1 is a new form of tumor suppressor with true haploid insufficiency. Nat Med 4, 802–807 (1998). https://doi.org/10.1038/nm0798-802

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0798-802

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing