Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites

Abstract

Infection with Leishmania major induces a protective immune response and long-term resistance to reinfection, which is thought to depend upon persistent parasites. Here we demonstrate that although effector CD4+ T cells are lost in the absence of parasites, central memory CD4+ T cells are maintained. Upon secondary infection, these central memory T cells become tissue-homing effector T cells and mediate protection. Thus, immunity to L. major is mediated by at least two distinct populations of CD4+ T cells: short-lived pathogen-dependent effector cells and long-lived pathogen-independent central memory cells. These data suggest that central memory T cells should be the targets for nonlive vaccines against infectious diseases requiring cell-mediated immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Central memory CD4+ T cells develop during L. major infection.
Figure 2: CD62L defines functionally distinct populations of CD4+ T cells.
Figure 3: TCM cells mediate protective immunity.
Figure 4: Protective TCM cells are present in ndLNs.
Figure 5: Parasite persistence is required for the maintenance of TEFF cells, but not TCM cells and protective immunity.

Similar content being viewed by others

References

  1. Reiner, S.L. & Locksley, R.M. The regulation of immunity to Leishmania major. Annu. Rev. Immunol. 13, 151–177 (1995).

    Article  CAS  Google Scholar 

  2. Sacks, D.L. & Noben-Trauth, N. The immunology of susceptibility and resistance to Leishmania major in mice. Nat. Rev. Immunol. 2, 845–858 (2002).

    Article  CAS  Google Scholar 

  3. Afonso, L.C. et al. The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science 263, 235–237 (1994).

    Article  CAS  Google Scholar 

  4. Gurunathan, S., Prussin, C., Sacks, D.L. & Seder, R.A. Vaccine requirements for sustained cellular immunity to an intracellular parasitic infection. Nat. Med. 4, 1409–1415 (1998).

    Article  CAS  Google Scholar 

  5. Gurunathan, S., Klinman, D.M. & Seder, R.A. DNA vaccines: immunology, application, and optimization. Annu. Rev. Immunol. 18, 927–974 (2000).

    Article  CAS  Google Scholar 

  6. Gicheru, M.M. et al. Vervet monkeys vaccinated with killed Leishmania major parasites and interleukin-12 develop a type 1 immune response but are not protected against challenge infection. Infect. Immun. 69, 245–251 (2001).

    Article  CAS  Google Scholar 

  7. Rhee, E.G. et al. Vaccination with heat-killed Leishmania antigen or recombinant leishmanial protein and CpG oligodeoxynucleotides induces long-term memory CD4+ and CD8+ T cell responses and protection against Leishmania major infection. J. Exp. Med. 195, 1565–1573 (2002).

    Article  CAS  Google Scholar 

  8. Desjeux, P. Leishmaniasis. Public health aspects and control. Clin. Dermatol. 14, 417–423 (1996).

    Article  CAS  Google Scholar 

  9. Uzonna, J.E., Wei, G., Yurkowski, D. & Bretscher, P. Immune elimination of Leishmania major in mice: implications for immune memory, vaccination, and reactivation disease. J. Immunol. 167, 6967–6974 (2001).

    Article  CAS  Google Scholar 

  10. Belkaid, Y., Piccirillo, C.A., Mendez, S., Shevach, E.M. & Sacks, D.L. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502–507 (2002).

    Article  CAS  Google Scholar 

  11. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712. (1999).

    Article  CAS  Google Scholar 

  12. Masopust, D., Vezys, V., Marzo, A.L. & Lefrancois, L. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 2413–2417 (2001).

    Article  CAS  Google Scholar 

  13. Reinhardt, R.L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M.K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).

    Article  CAS  Google Scholar 

  14. Roman, E. et al. CD4 effector T cell subsets in the response to influenza: heterogeneity, migration, and function. J. Exp. Med. 196, 957–968 (2002).

    Article  CAS  Google Scholar 

  15. Seder, R.A. & Ahmed, R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat. Immunol. 4, 835–842 (2003).

    Article  CAS  Google Scholar 

  16. Kaech, S.M., Hemby, S., Kersh, E. & Ahmed, R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111, 837–851 (2002).

    Article  CAS  Google Scholar 

  17. Wherry, E.J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4, 225–234 (2003).

    Article  CAS  Google Scholar 

  18. Bradley, L.M., Watson, S.R. & Swain, S.L. Entry of naive CD4 T cells into peripheral lymph nodes requires L-selectin. J. Exp. Med. 180, 2401–2406 (1994).

    Article  CAS  Google Scholar 

  19. Jung, T.M., Gallatin, W.M., Weissman, I.L. & Dailey, M.O. Down-regulation of homing receptors after T cell activation. J. Immunol. 141, 4110–4117 (1988).

    CAS  PubMed  Google Scholar 

  20. Picker, L.J. et al. Differential expression of homing-associated adhesion molecules by T cell subsets in man. J. Immunol. 145, 3247–3255 (1990).

    CAS  PubMed  Google Scholar 

  21. Zaph, C. & Scott, P. Th1 cell-mediated resistance to cutaneous infection with Leishmania major is independent of P- and E-selectins. J. Immunol. 171, 4726–4732 (2003).

    Article  CAS  Google Scholar 

  22. Titus, R.G., Gueiros-Filho, F.J., de Freitas, L.A. & Beverley, S.M. Development of a safe live Leishmania vaccine line by gene replacement. Proc. Natl. Acad. Sci. USA 92, 10267–10271 (1995).

    Article  CAS  Google Scholar 

  23. Brodskyn, C., Beverley, S.M. & Titus, R.G. Virulent or avirulent (dhfr-ts) Leishmania major elicit predominantly a type-1 cytokine response by human cells in vitro. Clin. Exp. Immunol. 119, 299–304 (2000).

    Article  CAS  Google Scholar 

  24. Mocci, S. & Coffman, R.L. Induction of a Th2 population from a polarized Leishmania-specific Th1 population by in vitro culture with IL-4. J. Immunol. 154, 3779–3787 (1995).

    CAS  PubMed  Google Scholar 

  25. Mocci, S. & Coffman, R.L. The mechanism of in vitro T helper cell type 1 to T helper cell type 2 switching in highly polarized Leishmania major-specific T cell populations. J. Immunol. 158, 1559–1564 (1997).

    CAS  PubMed  Google Scholar 

  26. Iezzi, G., Scheidegger, D. & Lanzavecchia, A. Migration and function of antigen-primed nonpolarized T lymphocytes in vivo. J. Exp. Med. 193, 987–993. (2001).

    Article  CAS  Google Scholar 

  27. Wang, X. & Mosmann, T. In vivo priming of CD4 T cells that produce interleukin (IL)-2 but not IL-4 or interferon (IFN)-gamma, and can subsequently differentiate into IL-4- or IFN-gamma-secreting cells. J. Exp. Med. 194, 1069–1080 (2001).

    Article  CAS  Google Scholar 

  28. Lanzavecchia, A. & Sallusto, F. Progressive differentiation and selection of the fittest in the immune response. Nat. Rev. Immunol. 2, 982–987 (2002).

    Article  CAS  Google Scholar 

  29. Doyle, A.M. et al. Induction of cytotoxic T lymphocyte antigen 4 (CTLA-4) restricts clonal expansion of helper T cells. J. Exp. Med. 194, 893–902 (2001).

    Article  CAS  Google Scholar 

  30. Gray, D. A role for antigen in the maintenance of immunological memory. Nat. Rev. Immunol. 2, 60–65 (2002).

    Article  CAS  Google Scholar 

  31. Zinkernagel, R.M. On natural and artificial vaccinations. Annu. Rev. Immunol. 21, 515–546 (2003).

    Article  CAS  Google Scholar 

  32. Swain, S.L., Hu, H. & Huston, G. Class II-independent generation of CD4 memory T cells from effectors. Science 286, 1381–1383 (1999).

    Article  CAS  Google Scholar 

  33. Murali-Krishna, K. et al. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286, 1377–1381 (1999).

    Article  CAS  Google Scholar 

  34. London, C.A., Perez, V.L. & Abbas, A.K. Functional characteristics and survival requirements of memory CD4+ T lymphocytes in vivo. J. Immunol. 162, 766–773 (1999).

    CAS  PubMed  Google Scholar 

  35. Bunce, C. & Bell, E.B. CD45RC isoforms define two types of CD4 memory T cells, one of which depends on persisting antigen. J. Exp. Med. 185, 767–776 (1997).

    Article  CAS  Google Scholar 

  36. Garcia, S., DiSanto, J. & Stockinger, B. Following the development of a CD4 T cell response in vivo: from activation to memory formation. Immunity 11, 163–171 (1999).

    Article  CAS  Google Scholar 

  37. Harbertson, J., Biederman, E., Bennett, K.E., Kondrack, R.M. & Bradley, L.M. Withdrawal of stimulation may initiate the transition of effector to memory CD4 cells. J. Immunol. 168, 1095–1102 (2002).

    Article  CAS  Google Scholar 

  38. Flynn, J.L. Immunology of tuberculosis and implications in vaccine development. Tuberculosis (Edinb.) 84, 93–101 (2004).

    Article  Google Scholar 

  39. Desrosiers, R.C. Prospects for an AIDS vaccine. Nat. Med. 10, 221–223 (2004).

    Article  CAS  Google Scholar 

  40. Scott, P., Pearce, E., Natovitz, P. & Sher, A. Vaccination against cutaneous leishmaniasis in a murine model. I. Induction of protective immunity with a soluble extract of promastigotes. J. Immunol. 139, 221–227 (1987).

    CAS  PubMed  Google Scholar 

  41. Lyons, A.B. & Parish, C.R. Determination of lymphocyte division by flow cytometry. J. Immunol. Methods 171, 131–137 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Joyce for excellent technical assistance, members of the Department of Pathobiology for constructive discussions and D. Artis, C.G. Feng, C.A. Hunter, D. Jankovic, E.J. Pearce, S.L. Reiner, H. Shen and A. Sher for critical reading of the manuscript. This work was supported by US National Institutes of Health grant AI35914 (to P. S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip Scott.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Homing to LNs is not required for effector T cell function during chronic infection with L. major (PDF 59 kb)

Supplementary Fig. 2

CD4+ T cells mediate infection-induced immunity (PDF 44 kb)

Supplementary Fig. 3

Characterization of CD4+ T cells from naive and immune B6 mice prior to adoptive transfer (PDF 44 kb)

Supplementary Fig. 4

Leishmania-specific IFN-γ and IL-2 responses by CD62Lhigh and CD62Llow CD4+ T cells (PDF 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaph, C., Uzonna, J., Beverley, S. et al. Central memory T cells mediate long-term immunity to Leishmania major in the absence of persistent parasites. Nat Med 10, 1104–1110 (2004). https://doi.org/10.1038/nm1108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing