Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The SHP-1 protein tyrosine phosphatase negatively modulates glucose homeostasis

Abstract

The protein tyrosine phosphatase SHP-1 is a well-known inhibitor of activation-promoting signaling cascades in hematopoietic cells but its potential role in insulin target tissues is unknown. Here we show that Ptpn6me-v/me-v (also known as viable motheaten) mice bearing a functionally deficient SHP-1 protein are markedly glucose tolerant and insulin sensitive as compared to wild-type littermates, as a result of enhanced insulin receptor signaling to IRS-PI3K-Akt in liver and muscle. Downregulation of SHP-1 activity in liver of normal mice by adenoviral expression of a catalytically inert mutant of SHP-1, or after small hairpin RNA–mediated SHP-1 silencing, further confirmed this phenotype. Tyrosine phosphorylation of CEACAM1, a modulator of hepatic insulin clearance, and clearance of serum [125I]-insulin were markedly increased in SHP-1–deficient mice or SHP-1–deficient hepatic cells in vitro. These findings show a novel role for SHP-1 in the regulation of glucose homeostasis through modulation of insulin signaling in liver and muscle as well as hepatic insulin clearance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SHP-1 is expressed in skeletal muscle and liver.
Figure 2: Metabolic phenotyping of wild-type and SHP-1–deficient Ptpn6me-v/me-v mice.
Figure 3: Insulin signaling to PI3K-Akt in muscle and liver of wild-type and Ptpn6me-v/me-v mice.
Figure 4: Effects of liver-specific overexpression of DNSHP-1 and knockdown of SHP-1 by shRNA-mediated gene silencing on glucose metabolism and insulin signaling.
Figure 5: SHP-1 regulates phosphorylation of CEACAM1 in liver and modulates hepatic insulin clearance.
Figure 6: SHP-1 binds to and dephosphorylates the insulin receptor, CEACAM1 and p85-PI3K in mouse liver.

Similar content being viewed by others

References

  1. Goldstein, B.J. Protein-tyrosine phosphatases: emerging targets for therapeutic intervention in type 2 diabetes and related states of insulin resistance. J. Clin. Endocrinol. Metab. 87, 2474–2480 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Asante-Appiah, E. & Kennedy, B.P. Protein tyrosine phosphatases: the quest for negative regulators of insulin action. Am. J. Physiol. Endocrinol. Metab. 284, E663–E670 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Elchebly, M., Cheng, A. & Tremblay, M.L. Modulation of insulin signaling by protein tyrosine phosphatases. J. Mol. Med. 78, 473–482 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Zabolotny, J.M. et al. Transgenic overexpression of protein-tyrosine phosphatase 1B in muscle causes insulin resistance, but overexpression with leukocyte antigen-related phosphatase does not additively impair insulin action. J. Biol. Chem. 279, 24844–24851 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544–1548 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Ahmad, F. & Goldstein, B.J. Functional association between the insulin receptor and the transmembrane protein-tyrosine phosphatase LAR in intact cells. J. Biol. Chem. 272, 448–457 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Klaman, L.D. et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol. Cell. Biol. 20, 5479–5489 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yamauchi, K., Milarski, K.L., Saltiel, A.R. & Pessin, J.E. Protein-tyrosine-phosphatase SHPTP2 is a required positive effector for insulin downstream signaling. Proc. Natl. Acad. Sci. USA 92, 664–668 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maegawa, H. et al. Expression of a dominant negative SHP-2 in transgenic mice induces insulin resistance. J. Biol. Chem. 274, 30236–30243 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Matthews, R.J., Bowne, D.B., Flores, E. & Thomas, M.L. Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences. Mol. Cell. Biol. 12, 2396–2405 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Plutzky, J., Neel, B.G. & Rosenberg, R.D. Isolation of a src homology 2-containing tyrosine phosphatase. Proc. Natl. Acad. Sci. USA 89, 1123–1127 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shen, S.H., Bastien, L., Posner, B.I. & Chretien, P. A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases. Nature 352, 736–739 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Yi, T.L., Cleveland, J.L. & Ihle, J.N. Protein tyrosine phosphatase containing SH2 domains: characterization, preferential expression in hematopoietic cells, and localization to human chromosome 12p12-p13. Mol. Cell. Biol. 12, 836–846 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, H.E., Chang, S., Trub, T. & Neel, B.G. Regulation of colony-stimulating factor 1 receptor signaling by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol. Cell. Biol. 16, 3685–3697 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Klingmuller, U., Lorenz, U., Cantley, L.C., Neel, B.G. & Lodish, H.F. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80, 729–738 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Tomic, S. et al. Association of SH2 domain protein tyrosine phosphatases with the epidermal growth factor receptor in human tumor cells. Phosphatidic acid activates receptor dephosphorylation by PTP1C. J. Biol. Chem. 270, 21277–21284 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Uchida, T. et al. Insulin stimulates the phosphorylation of Tyr538 and the catalytic activity of PTP1C, a protein tyrosine phosphatase with Src homology-2 domains. J. Biol. Chem. 269, 12220–12228 (1994).

    CAS  PubMed  Google Scholar 

  18. Bousquet, C. et al. sst2 somatostatin receptor mediates negative regulation of insulin receptor signaling through the tyrosine phosphatase SHP-1. J. Biol. Chem. 273, 7099–7106 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Imani, F., Rager, K.J., Catipovic, B. & Marsh, D.G. Interleukin-4 (IL-4) induces phosphatidylinositol 3-kinase (p85) dephosphorylation. Implications for the role of SHP-1 in the IL-4-induced signals in human B cells. J. Biol. Chem. 272, 7927–7931 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Yu, Z. et al. SHP-1 associates with both platelet-derived growth factor receptor and the p85 subunit of phosphatidylinositol 3-kinase. J. Biol. Chem. 273, 3687–3694 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Cuevas, B. et al. SHP-1 regulates Lck-induced phosphatidylinositol 3-kinase phosphorylation and activity. J. Biol. Chem. 274, 27583–27589 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Beauchemin, N. et al. Association of biliary glycoprotein with protein tyrosine phosphatase SHP-1 in malignant colon epithelial cells. Oncogene 14, 783–790 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Boulton, I.C. & Gray-Owen, S.D. Neisserial binding to CEACAM1 arrests the activation and proliferation of CD4+ T lymphocytes. Nat. Immunol. 3, 229–236 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Nakajima, A. et al. Activation-induced expression of carcinoembryonic antigen-cell adhesion molecule 1 regulates mouse T lymphocyte function. J. Immunol. 168, 1028–1035 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Formisano, P. et al. Receptor-mediated internalization of insulin. Potential role of pp120/HA4, a substrate of the insulin receptor kinase. J. Biol. Chem. 270, 24073–24077 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Li Calzi, S., Choice, C.V. & Najjar, S.M. Differential effect of pp120 on insulin endocytosis by two variant insulin receptor isoforms. Am. J. Physiol. 273, E801–E808 (1997).

    CAS  PubMed  Google Scholar 

  27. Najjar, S.M., Choice, C.V., Soni, P., Whitman, C.M. & Poy, M.N. Effect of pp120 on receptor-mediated insulin endocytosis is regulated by the juxtamembrane domain of the insulin receptor. J. Biol. Chem. 273, 12923–12928 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Choice, C.V., Howard, M.J., Poy, M.N., Hankin, M.H. & Najjar, S.M. Insulin stimulates pp120 endocytosis in cells co-expressing insulin receptors. J. Biol. Chem. 273, 22194–22200 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Poy, M.N. et al. CEACAM1 regulates insulin clearance in liver. Nat. Genet. 30, 270–276 (2002).

    Article  PubMed  Google Scholar 

  30. Tsui, H.W., Siminovitch, K.A., de Souza, L. & Tsui, F.W. Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat. Genet. 4, 124–129 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Norris, K. et al. Expression of protein-tyrosine phosphatases in the major insulin target tissues. FEBS Lett. 415, 243–248 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Forget, G. et al. Role of host phosphotyrosine phosphatase SHP-1 in the development of murine leishmaniasis. Eur. J. Immunol. 31, 3185–3196 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Tenev, T. et al. Perinuclear localization of the protein-tyrosine phosphatase SHP-1 and inhibition of epidermal growth factor-stimulated STAT1/3 activation in A431 cells. Eur. J. Cell Biol. 79, 261–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Duchesne, C., Charland, S., Asselin, C., Nahmias, C. & Rivard, N. Negative regulation of beta-catenin signaling by tyrosine phosphatase SHP-1 in intestinal epithelial cells. J. Biol. Chem. 278, 14274–14283 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Furnari, F.B., Huang, H.J. & Cavenee, W.K. The phosphoinositol phosphatase activity of PTEN mediates a serum-sensitive G1 growth arrest in glioma cells. Cancer Res. 58, 5002–5008 (1998).

    CAS  PubMed  Google Scholar 

  36. Myers, M.P. et al. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc. Natl. Acad. Sci. USA 95, 13513–13518 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, J., Somani, A.K. & Siminovitch, K.A. Roles of the SHP-1 tyrosine phosphatase in the negative regulation of cell signalling. Semin. Immunol. 12, 361–378 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Dustin, L.B. et al. Expression of dominant-negative src-homology domain 2-containing protein tyrosine phosphatase-1 results in increased Syk tyrosine kinase activity and B cell activation. J. Immunol. 162, 2717–2724 (1999).

    CAS  PubMed  Google Scholar 

  39. Levy, J.R. & Olefsky, J.M. The trafficking and processing of insulin and insulin receptors in cultured rat hepatocytes. Endocrinology 121, 2075–2086(1987).

    Article  CAS  PubMed  Google Scholar 

  40. Hayashi, H. et al. Phosphorylation in vitro of the 85 kDa subunit of phosphatidylinositol 3-kinase and its possible activation by insulin receptor tyrosine kinase. Biochem. J. 280, 769–775 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hayashi, H. et al. Insulin treatment stimulates the tyrosine phosphorylation of the alpha-type 85-kDa subunit of phosphatidylinositol 3-kinase in vivo. J. Biol. Chem. 267, 22575–22580 (1992).

    CAS  PubMed  Google Scholar 

  42. Cuevas, B.D. et al. Tyrosine phosphorylation of p85 relieves its inhibitory activity on phosphatidylinositol 3-kinase. J. Biol. Chem. 276, 27455–27461 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Yu, J. et al. Regulation of the p85/p110 phosphatidylinositol 3′-kinase: stabilization and inhibition of the p110alpha catalytic subunit by the p85 regulatory subunit. Mol. Cell. Biol. 18, 1379–1387 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ueki, K., Algenstaedt, P., Mauvais-Jarvis, F. & Kahn, C.R. Positive and negative regulation of phosphoinositide 3-kinase-dependent signaling pathways by three different gene products of the p85alpha regulatory subunit. Mol. Cell. Biol. 20, 8035–8046 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lu, Y. et al. Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades. J. Biol. Chem. 278, 40057–40066 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Shayakhmetov, D.M., Li, Z.Y., Ni, S. & Lieber, A. Analysis of adenovirus sequestration in the liver, transduction of hepatic cells, and innate toxicity after injection of fiber-modified vectors. J. Virol. 78, 5368–5381 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dai, T. et al. Interaction between altered insulin and lipid metabolism in CEACAM1-inactive transgenic mice. J. Biol. Chem. 279, 45155–45161 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Najjar, S.M. et al. Insulin acutely decreases hepatic fatty acid synthase activity. Cell Metab. 2, 43–53 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Kim, H.J. et al. Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 53, 1060–1067 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Perreault, M. & Marette, A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat. Med. 7, 1138–1143 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Canadian Diabetes Association (to A.M.) and Canadian Institutes for Health Research (CIHR) (to A.M., K.A.S. and N.B.). Part of this study was also conducted at the US National Institutes of Health–Yale Mouse Metabolic Phenotyping Center and supported by grants from the United States Public Health Service (U24 DK-59635 to G.I.S. and J.K.K.) and the American Diabetes Association (7-01-JF-05 to J.K.K.). A.M. is the recipient of a CIHR Investigator Award. K.A.S. is a CIHR Senior Scientist and a McLaughlin Centre for Molecular Medicine Scientist. M.O. is a CIHR investigator and a Burroughs Wellcome Fund Fellow. G.I.S. is an investigator of Howard Hughes Medical Institute and the recipient of a Distinguished Clinical Scientist Award from the American Diabetes Association. N.B. is a senior researcher from the Fonds de la recherche en Santé du Québec. M.-J.D. and S.B. were supported by studentships from the Fonds de la recherche en Santé du Québec and the Canadian Diabetes Association. We thank B. Marcotte, S. Brûlé, P. Dallaire, N. Lefort, S. Fortier, V. Rampersad, J. Blanchette and T. Higashimori for technical assistance. We also thank A. Simard and S. Rivest for their help with immunofluorescence microscopy, M.L. Tremblay (McGill Univ.) for providing wild-type and mutant forms of GST-PTP1B and GST–PTP-PEST, and A. Veillette for the SHP-1–specific antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Marette.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

SHP-1 immunoreactivity in liver and skeletal muscle of wild-type and Ptpn6me/me mice. (PDF 90 kb)

Supplementary Fig. 2

Effect of wortmannin on 2-DG uptake by soleus and EDL muscles of wild-type and SHP-1–deficient Ptpn6me-v/me-v mice. (PDF 50 kb)

Supplementary Fig. 3

Insulin signaling in muscle and liver of wild-type and Ptpn6me-v/me-v or lacZ- and DNSHP-1–transduced mice. (PDF 104 kb)

Supplementary Fig. 4

PTEN tyrosine phosphorylation in liver of animal models of SHP-1 deficiency. (PDF 78 kb)

Supplementary Fig. 5

In vivo transduction of liver after systemic delivery of adenovirally encoded GFP. (PDF 352 kb)

Supplementary Table 1

Physiological parameters of wild-type and SHP-1–deficient mice. (PDF 21 kb)

Supplementary Table 2

Quantification of changes in insulin-stimulated tyrosine phosphorylation of insulin signaling problems in tissues of Ptpn6me-v/me-v and DNSHP-1–transduced mice. (PDF 19 kb)

Supplementary Methods (PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubois, MJ., Bergeron, S., Kim, HJ. et al. The SHP-1 protein tyrosine phosphatase negatively modulates glucose homeostasis. Nat Med 12, 549–556 (2006). https://doi.org/10.1038/nm1397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1397

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing