Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nitric oxide in the human respiratory cycle

Abstract

Interactions of nitric oxide (NO) with hemoglobin (Hb) could regulate the uptake and delivery of oxygen (O2) by subserving the classical physiological responses of hypoxic vasodilation and hyperoxic vasconstriction in the human respiratory cycle. Here we show that in in vitro and ex vivo systems as well as healthy adults alternately exposed to hypoxia or hyperoxia (to dilate or constrict pulmonary and systemic arteries in vivo), binding of NO to hemes (FeNO) and thiols (SNO) of Hb varies as a function of HbO2 saturation (FeO2). Moreover, we show that red blood cell (RBC)/SNO-mediated vasodilator activity is inversely proportional to FeO2 over a wide range, whereas RBC-induced vasoconstriction correlates directly with FeO2. Thus, native RBCs respond to changes in oxygen tension (pO2) with graded vasodilator and vasoconstrictor activity, which emulates the human physiological response subserving O2 uptake and delivery. The ability to monitor and manipulate blood levels of NO, in conjunction with O2 and carbon dioxide, may therefore prove useful in the diagnosis and treatment of many human conditions and in the development of new therapies. Our results also help elucidate the link between RBC dyscrasias and cardiovascular morbidity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oxygenation/deoxygenation-dependent NO reactions in human blood and hemoglobin.
Figure 2: Levels of SNO–Hb (▪) and Hb[FeNO] (□).
Figure 3: RBC-mediated hypoxic vasodilation and hyperoxic vasoconstriction.
Figure 4: Simplified 2-state model of the human respiratory cycle: a 3-gas system involving NO, CO2 and O2.

Similar content being viewed by others

References

  1. Andrews, D.A. & Low, P.S. Role of red blood cells in thrombosis. Curr. Opin. Hematol. 6, 76–82 (1999).

    Article  CAS  Google Scholar 

  2. Hart, R.G. & Kanter, M.C. Hematologic disorders and ischemic stroke. A selective review. Stroke 21, 1111–1121 (1990).

    Article  CAS  Google Scholar 

  3. Embury, S.H., Mohandas, N., Paszty, C., Cooper, P. & Cheung, A.T. In vivo blood flow abnormalities in the transgenic knockout sickle cell mouse. J. Clin. Invest. 103, 915–920 (1999).

    Article  CAS  Google Scholar 

  4. Reddy, P.L., Bowie, L.J. & Callistein, S. Binding of nitric oxide to thiols and hemes in hemoglobin H: implications for α-thalassemia and hypertension. Clin. Chem. 43, 1442–1447 (1997).

    CAS  PubMed  Google Scholar 

  5. Ruschitzka, F.T. et al. Nitric oxide prevents cardiovascular disease and determines survival in polyglobulic mice overexpressing erythropoietin. Proc. Natl. Acad. Sci. USA 97, 11609–11613 (2000).

    Article  CAS  Google Scholar 

  6. Deem, S., Swenson, E.R., Alberts, M.K., Hedges, R.G. & Bishop, M.J. Red-blood-cell augmentation of hypoxic pulmonary vasoconstriction: hematocrit dependence and the importance of nitric oxide. Am. J. Respir. Crit. Care Med. 157, 1181–1186 (1998).

    Article  CAS  Google Scholar 

  7. Cirillo, M., Laurenzi, M., Trevisan, M. & Stamler, J. Hematocrit, blood pressure, and hypertension. The Gubbio Population Study. Hypertension 20, 319–326 (1992).

    Article  CAS  Google Scholar 

  8. Stephansson, O., Dickman, P.W., Johansson, A. & Cnattingius, S. Maternal hemoglobin concentration during pregnancy and risk of stillbirth. JAMA 284, 2611–2617 (2000).

    Article  CAS  Google Scholar 

  9. Besarab, A. et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N. Engl. J. Med. 339, 584–590 (1998).

    Article  CAS  Google Scholar 

  10. Hebert, P.C. et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N. Engl. J. Med. 340, 409–417 (1999); erratum: 340, 1056 (1999).

    Article  CAS  Google Scholar 

  11. Ketcham, E.M. & Cairns, C.B. Hemoglobin-based oxygen carriers: development and clinical potential. Ann. Emerg. Med. 33, 326–337 (1999).

    Article  CAS  Google Scholar 

  12. French, J.A., 2nd et al. Mechanisms of stroke in sickle cell disease: sickle erythrocytes decrease cerebral blood flow in rats after nitric oxide synthase inhibition. Blood 89, 4591–4599 (1997).

    CAS  PubMed  Google Scholar 

  13. Stamler, J.S. et al. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 276, 2034–2037 (1997).

    Article  CAS  Google Scholar 

  14. McMahon, T.J. & Stamler, J.S. Concerted nitric oxide/oxygen delivery by hemoglobin. Methods Enzymol. 301, 99–114 (1999).

    Article  CAS  Google Scholar 

  15. Antonini, E. & Brunori, M. Hemoglobin and myoglobin in their reactions with ligands. in Frontiers in Biology (ed. Neuberger, A. & Tatum, E.L.) 13 (Elsevier, Amsterdam, 1971).

    Google Scholar 

  16. Jia, L., Bonaventura, C., Bonaventura, J. & Stamler, J.S. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380, 221–226 (1996).

    Article  CAS  Google Scholar 

  17. Perutz, M.F., Wilkinson, A.J., Paoli, M. & Dodson, G.G. The stereochemical mechanism of the cooperative effects in hemoglobin revisited. Annu. Rev. Biophys. Biomol. Struct. 27, 1–34 (1998).

    Article  CAS  Google Scholar 

  18. Stamler, J.S., Lamas, S. & Fang, F.C. Nitrosylation. The prototypic redox-based signaling mechanism. Cell 106, 675–683 (2001).

    Article  CAS  Google Scholar 

  19. McMahon, T.J., Stone, A.E., Bonaventura, J., Singel, D.J. & Stamler, J.S. Functional coupling of oxygen binding and vasoactivity in S-nitrosohemoglobin. J. Biol. Chem. 275, 16738–16745 (2000).

    Article  CAS  Google Scholar 

  20. Gow, A.J. & Stamler, J.S. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 391, 169–173 (1998).

    Article  CAS  Google Scholar 

  21. Gow, A.J., Luchsinger, B.P., Pawloski, J.R., Singel, D.J. & Stamler, J.S. The oxyhemoglobin reaction of nitric oxide. Proc. Natl. Acad. Sci. USA 96, 9027–9032 (1999).

    Article  CAS  Google Scholar 

  22. Pezacki, J.P., Ship, N.J. & Kluger, R. Release of nitric oxide from S-nitrosohemoglobin. Electron transfer as a response to deoxygenation. J. Am. Chem. Soc. 123, 4615–4616 (2001).

    Article  CAS  Google Scholar 

  23. Padron, J., Peiro, C., Cercas, E., Llergo, J.L. & Sanchez-Ferrer, C.F. Enhancement of S-nitrosylation in glycosylated hemoglobin. Biochem. Biophys. Res. Commun. 271, 217–221 (2000).

    Article  CAS  Google Scholar 

  24. Lipton, A.J. et al. S-nitrosothiols signal the ventilatory response to hypoxia. Nature 413, 171–174 (2001).

    Article  CAS  Google Scholar 

  25. Pawloski, J.R., Hess, D.T. & Stamler, J.S. Export by red blood cells of nitric oxide bioactivity. Nature 409, 622–626 (2001).

    Article  CAS  Google Scholar 

  26. Tsuda, K., Kimura, K., Nishio, I. & Masuyama, Y. Nitric oxide improves membrane fluidity of erythrocytes in essential hypertension: an electron paramagnetic resonance investigation. Biochem. Biophys. Res. Commun. 275, 946–954 (2000).

    Article  CAS  Google Scholar 

  27. Balagopalakrishna, C. et al. Superoxide produced in the heme pocket of the β-chain of hemoglobin reacts with the β-93 cysteine to produce a thiyl radical. Biochemistry 37, 13194–13202 (1998).

    Article  CAS  Google Scholar 

  28. Coburn, R.F., Ploegmakers, F., Gondrie, P. & Abboud, R. Myocardial myoglobin oxygen tension. Am. J. Physiol. 224, 870–876 (1973).

    Article  CAS  Google Scholar 

  29. Gorczynski, R.J. & Duling, B.R. Role of oxygen in arteriolar functional vasodilation in hamster striated muscle. Am. J. Physiol. 235, H505–H515 (1978).

    CAS  PubMed  Google Scholar 

  30. Freeman, G., Dyer, R.L., Juhos, L.T., St. John, G.A. & Anbar, M. Identification of nitric oxide (NO) in human blood. Arch. Environ. Health 33, 19–23 (1978).

    Article  CAS  Google Scholar 

  31. Kosaka, H. et al. Direct proof of nitric oxide formation from a nitrovasodilator metabolised by erythrocytes. Biochem. Biophys. Res. Commun. 204, 1055–1060 (1994).

    Article  CAS  Google Scholar 

  32. Roccatello, D. et al. Early increase in blood nitric oxide, detected by electron paramagnetic resonance as nitrosylhaemoglobin, in haemodialysis. Nephrol. Dial. Transplant 12, 292–297 (1997).

    Article  CAS  Google Scholar 

  33. Funai, E.F., Davidson, A., Seligman, S.P. & Finlay, T.H. S-nitrosohemoglobin in the fetal circulation may represent a cycle for blood pressure regulation. Biochem. Biophys. Res. Commun. 239, 875–877 (1997).

    Article  CAS  Google Scholar 

  34. Weinberg, J.B., Gilkeson, G.S., Mason, R.P. & Chamulitrat, W. Nitrosylation of blood hemoglobin and renal nonheme proteins in autoimmune MRL-lpr/lpr mice. Free Radic. Biol. Med. 24, 191–196 (1998).

    Article  CAS  Google Scholar 

  35. Kohno, M., Masumizu, T. & Mori, A. ESR demonstration of nitric oxide production from nitroglycerin and sodium nitrite in the blood of rats. Free Radic. Biol. Med. 18, 451–457 (1995).

    Article  CAS  Google Scholar 

  36. Takahashi, Y. et al. Nitrosyl hemoglobin in blood of normoxic and hypoxic sheep during nitric oxide inhalation. Am. J. Physiol. 274, H349–H357 (1998).

    Article  CAS  Google Scholar 

  37. Gladwin, M.T. et al. Relative role of heme nitrosylation and β-cysteine 93 nitrosation in the transport and metabolism of nitric oxide by hemoglobin in the human circulation. Proc. Natl. Acad. Sci. USA 97, 9943–9948 (2000).

    Article  CAS  Google Scholar 

  38. Park, K.H., Rubin, L.E., Gross, S.S. & Levi, R. Nitric oxide is a mediator of hypoxic coronary vasodilatation. Relation to adenosine and cyclooxygenase-derived metabolites. Circ. Res. 71, 992–1001 (1992).

    Article  CAS  Google Scholar 

  39. Daut, J. et al. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 247, 1341–1344 (1990).

    Article  CAS  Google Scholar 

  40. Pinard, E., Puiroud, S. & Seylaz, J. Role of adenosine in cerebral hypoxic hyperemia in the unanesthetized rabbit. Brain Res. 481, 124–130 (1989).

    Article  CAS  Google Scholar 

  41. Baur, T.S., Brodowicz, G.R. & Lamb, D.R. Indomethacin suppresses the coronary flow response to hypoxia in exercise trained and sedentary rats. Cardiovasc Res. 24, 733–736 (1990).

    Article  CAS  Google Scholar 

  42. Heyman, S.N., Goldfarb, M., Darmon, D. & Brezis, M. Tissue oxygenation modifies nitric oxide bioavailability. Microcirculation 6, 199–203 (1999).

    Article  CAS  Google Scholar 

  43. de Belder, A.J., MacAllister, R., Radomski, M.W., Moncada, S. & Vallance, P.J. Effects of S-nitroso-glutathione in the human forearm circulation: evidence for selective inhibition of platelet activation. Cardiovasc Res. 28, 691–694 (1994).

    Article  CAS  Google Scholar 

  44. Blitzer, M.L., Loh, E., Roddy, M.A., Stamler, J.S. & Creager, M.A. Endothelium-derived nitric oxide regulates systemic and pulmonary vascular resistance during acute hypoxia in humans. J. Am. Coll. Cardiol. 28, 591–596 (1996).

    Article  CAS  Google Scholar 

  45. Wu, W.C., Rathore, S.S., Wang, Y., Radford, M.J. & Krumholz, H.M. Blood transfusion in elderly patients with acute myocardial infarction. N. Engl. J. Med. 345, 1230–1236 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Yan for technical assistance. This work was supported by grants from the NIH (K08 HL04014 to T.J.M.; HL04424-09 to C.A.P.), and NSF (MCB-0091228 to D.J.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan S. Stamler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMahon, T., Moon, R., Luschinger, B. et al. Nitric oxide in the human respiratory cycle. Nat Med 8, 711–717 (2002). https://doi.org/10.1038/nm718

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm718

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing