Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma

Abstract

Whereas uncoupling protein 1 (UCP-1) is clearly involved in thermogenesis, the role of UCP-2 is less clear. Using hybridization, cloning techniques and cDNA array analysis to identify inducible neuroprotective genes, we found that neuronal survival correlates with increased expression of Ucp2. In mice overexpressing human UCP-2, brain damage was diminished after experimental stroke and traumatic brain injury, and neurological recovery was enhanced. In cultured cortical neurons, UCP-2 reduced cell death and inhibited caspase-3 activation induced by oxygen and glucose deprivation. Mild mitochondrial uncoupling by 2,4-dinitrophenol (DNP) reduced neuronal death, and UCP-2 activity was enhanced by palmitic acid in isolated mitochondria. Also in isolated mitochondria, UCP-2 shifted the release of reactive oxygen species from the mitochondrial matrix to the extramitochondrial space. We propose that UCP-2 is an inducible protein that is neuroprotective by activating cellular redox signaling or by inducing mild mitochondrial uncoupling that prevents the release of apoptogenic proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sublethal insults induce UCP-2.
Figure 2: UCP-2 is neuroprotective in models of neuronal damage in vitro and in vivo.
Figure 3: UCP-2 preserves mitochondrial membrane potential and inhibits activation of caspase-3 after OGD.
Figure 4: UCP-2 alters generation of ROS in mitochondria from transgenic and wild-type mice.
Figure 5

Similar content being viewed by others

References

  1. Kroemer, G. & Reed, J.C. Mitochondrial control of cell death. Nat. Med. 6, 513–519 (2000).

    Article  CAS  Google Scholar 

  2. Dirnagl, U., Iadecola, C. & Moskowitz, M.A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22, 391–397 (1999).

    Article  CAS  Google Scholar 

  3. Barone, F.C. et al. Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke 29, 1937–1950 (1998).

    Article  CAS  Google Scholar 

  4. Negre-Salvayre, A. et al. A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J. 11, 809–815 (1997).

    Article  CAS  Google Scholar 

  5. Arsenijevic, D. et al. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat. Genet. 26, 435–439 (2000).

    Article  CAS  Google Scholar 

  6. Brand, M.D. et al. Oxidative damage and phospholipid fatty acyl composition in skeletal muscle mitochondria from mice underexpressing or overexpressing uncoupling protein 3. Biochem. J. 368, 597–603 (2002).

    Article  CAS  Google Scholar 

  7. Casteilla, L., Rigoulet, M. & Penicaud, L. Mitochondrial ROS metabolism: modulation by uncoupling proteins. IUBMB Life 52, 181–188 (2001).

    Article  CAS  Google Scholar 

  8. Fleury, C. et al. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat. Genet. 15, 269–272 (1997).

    Article  CAS  Google Scholar 

  9. Horvath, T.L. et al. Uncoupling proteins-2 and 3 influence obesity and inflammation in transgenic mice. Int. J. Obes. Relat. Metab. Disord. 27, 433–442 (2003).

    Article  CAS  Google Scholar 

  10. Chan, C.B. et al. Increased uncoupling protein-2 levels in beta-cells are associated with impaired glucose-stimulated insulin secretion: mechanism of action. Diabetes 50, 1302–1310 (2001).

    Article  CAS  Google Scholar 

  11. Li, L.X., Skorpen, F., Egeberg, K., Jorgensen, I.H. & Grill, V. Uncoupling protein-2 participates in cellular defense against oxidative stress in clonal beta-cells. Biochem. Biophys. Res. Commun. 282, 273–277 (2001).

    Article  CAS  Google Scholar 

  12. Bechmann, I. et al. Brain mitochondrial uncoupling protein 2 (UCP2): a protective stress signal in neuronal injury. Biochem. Pharmacol. 64, 363–367 (2002).

    Article  CAS  Google Scholar 

  13. Diatchenko, L. et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93, 6025–6030 (1996).

    Article  CAS  Google Scholar 

  14. Krauss, S., Zhang, C.Y. & Lowell, B.B. A significant portion of mitochondrial proton leak in intact thymocytes depends on expression of UCP2. Proc. Natl. Acad. Sci. USA 99, 118–122 (2002).

    Article  CAS  Google Scholar 

  15. Grabb, M.C. & Choi, D.W. Ischemic tolerance in murine cortical cell culture: critical role for NMDA receptors. J. Neurosci. 19, 1657–1662 (1999).

    Article  CAS  Google Scholar 

  16. Gonzalez-Zulueta, M. et al. Requirement for nitric oxide activation of p21(ras)/extracellular regulated kinase in neuronal ischemic preconditioning. Proc. Natl. Acad. Sci. USA 97, 436–441 (2000).

    Article  CAS  Google Scholar 

  17. Fuller, P.M., Warden, C.H., Barry, S.J. & Fuller, C.A. Effects of 2-G exposure on temperature regulation, circadian rhythms, and adiposity in UCP2/3 transgenic mice. J. Appl. Physiol. 89, 1491–1498 (2000).

    Article  CAS  Google Scholar 

  18. Hara, H., Huang, P.L., Panahian, N., Fishman, M.C. & Moskowitz, M.A. Reduced brain edema and infarction volume in mice lacking the neuronal isoform of nitric oxide synthase after transient MCA occlusion. J. Cereb. Blood Flow Metab. 16, 605–611 (1996).

    Article  CAS  Google Scholar 

  19. Smith, D.H. et al. A model of parasagittal controlled cortical impact in the mouse: cognitive and histopathologic effects. J. Neurotrauma 12, 169–178 (1995).

    Article  CAS  Google Scholar 

  20. Scherbel, U. et al. Differential acute and chronic responses of tumor necrosis factor-deficient mice to experimental brain injury. Proc. Natl. Acad. Sci. USA 96, 8721–8726 (1999).

    Article  CAS  Google Scholar 

  21. Castilho, R.F., Hansson, O., Ward, M.W., Budd, S.L. & Nicholls, D.G. Mitochondrial control of acute glutamate excitotoxicity in cultured cerebellar granule cells. J. Neurosci. 18, 10277–10286 (1998).

    Article  CAS  Google Scholar 

  22. Wieloch, T. Mitochondrial involvement in acute neurodegeneration. IUBMB Life 52, 247–254 (2001).

    Article  CAS  Google Scholar 

  23. Teranishi, M. et al. Swelling of free-radical-induced megamitochondria causes apoptosis. Exp. Mol. Pathol. 68, 104–123 (2000).

    Article  CAS  Google Scholar 

  24. Anderson, M.F. & Sims, N.R. Improved recovery of highly enriched mitochondrial fractions from small brain tissue samples. Brain Res. Brain Res. Protoc. 5, 95–101 (2000).

    Article  CAS  Google Scholar 

  25. Kowaltowski, A.J., Naia-da-Silva, E.S., Castilho, R.F. & Vercesi, A.E. Ca2+-stimulated mitochondrial reactive oxygen species generation and permeability transition are inhibited by dibucaine or Mg2+. Arch. Biochem. Biophys. 359, 77–81 (1998).

    Article  CAS  Google Scholar 

  26. Bazan, N.G., Jr. Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta 218, 1–10 (1970).

    Article  CAS  Google Scholar 

  27. Fink, B.D. et al. UCP2-dependent proton leak in isolated mammalian mitochondria. J. Biol. Chem. 277, 3918–3925 (2002).

    Article  CAS  Google Scholar 

  28. Echtay, K.S. et al. Superoxide activates mitochondrial uncoupling proteins. Nature 415, 96–99 (2002).

    Article  CAS  Google Scholar 

  29. Harper, J.A., Dickinson, K. & Brand, M.D. Mitochondrial uncoupling as a target for drug development for the treatment of obesity. Obes. Rev. 2, 255–265 (2001).

    Article  CAS  Google Scholar 

  30. Jarmuszkiewicz, W., Behrendt, M., Navet, R. & Sluse, F.E. Uncoupling protein and alternative oxidase of Dictyostelium discoideum: occurrence, properties and protein expression during vegetative life and starvation-induced early development. FEBS Lett. 532, 459–464 (2002).

    Article  CAS  Google Scholar 

  31. Korshunov, S.S., Korkina, O.V., Ruuge, E.K., Skulachev, V.P. & Starkov, A.A. Fatty acids as natural uncouplers preventing generation of O2 and H2O2 by mitochondria in the resting state. FEBS Lett. 435, 215–218 (1998).

    Article  CAS  Google Scholar 

  32. Liu, S.S. Generating, partitioning, targeting and functioning of superoxide in mitochondria. Biosci. Rep. 17, 259–272 (1997).

    Article  CAS  Google Scholar 

  33. Castilho, R.F., Kowaltowski, A.J., Meinicke, A.R., Bechara, E.J. & Vercesi, A.E. Permeabilization of the inner mitochondrial membrane by Ca2+ ions is stimulated by t-butyl hydroperoxide and mediated by reactive oxygen species generated by mitochondria. Free Radic. Biol. Med. 18, 479–486 (1995).

    Article  CAS  Google Scholar 

  34. Halestrap, A.P., Kerr, P.M., Javadov, S. & Woodfield, K.Y. Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim. Biophys. Acta 1366, 79–94 (1998).

    Article  CAS  Google Scholar 

  35. Fiskum, G. Mitochondrial participation in ischemic and traumatic neural cell death. J. Neurotrauma 17, 843–855 (2000).

    Article  CAS  Google Scholar 

  36. Nowicki, J.P., Assumel-Lurdin, C., Duverger, D. & MacKenzie, E.T. Temporal evolution of regional energy metabolism following focal cerebral ischemia in the rat. J. Cereb. Blood Flow. Metab. 8, 462–473 (1988).

    Article  CAS  Google Scholar 

  37. Echtay, K.S., Winkler, E. & Klingenberg, M. Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature 408, 609–613 (2000).

    Article  CAS  Google Scholar 

  38. Hampton, M.B., Fadeel, B. & Orrenius, S. Redox regulation of the caspases during apoptosis. Ann. NY Acad. Sci. 854, 328–335 (1998).

    Article  CAS  Google Scholar 

  39. Susin, S.A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999).

    Article  CAS  Google Scholar 

  40. Mattson, M.P., Culmsee, C. & Yu, Z.F. Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res. 301, 173–187 (2000).

    Article  CAS  Google Scholar 

  41. Kato, H. et al. Immunohistochemical localization of superoxide dismutase in the hippocampus following ischemia in a gerbil model of ischemic tolerance. J. Cereb. Blood Flow Metab. 15, 60–70 (1995).

    Article  CAS  Google Scholar 

  42. Couplan, E. et al. No evidence for a basal, retinoic, or superoxide-induced uncoupling activity of the uncoupling protein 2 present in spleen or lung mitochondria. J. Biol. Chem. 277, 26268–26275 (2002).

    Article  CAS  Google Scholar 

  43. Shamloo, M. & Wieloch, T. Changes in protein tyrosine phosphorylation in the rat brain after cerebral ischemia in a model of ischemic tolerance. J. Cereb. Blood Flow Metab. 19, 173–183 (1999).

    Article  CAS  Google Scholar 

  44. Kuroda, S., Tsuchidate, R., Smith, M.L., Maples, K.R. & Siesjo, B.K. Neuroprotective effects of a novel nitrone, NXY-059, after transient focal cerebral ischemia in the rat. J. Cereb. Blood Flow Metab. 19, 778–787 (1999).

    Article  CAS  Google Scholar 

  45. Bentzer, P., Mattiasson, G., McIntosh, T.K., Wieloch, T. & Grande, P.O. Infusion of prostacyclin following experimental brain injury in the rat reduces cortical lesion volume. J. Neurotrauma 18, 275–285 (2001).

    Article  CAS  Google Scholar 

  46. Xiong, Y., Gu, Q., Peterson, P.L., Muizelaar, J.P. & Lee, C.P. Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J. Neurotrauma 14, 23–34 (1997).

    Article  CAS  Google Scholar 

  47. Sims, N.R. Rapid isolation of metabolically active mitochondria from rat brain and subregions using Percoll density gradient centrifugation. J. Neurochem. 55, 698–707 (1990).

    Article  CAS  Google Scholar 

  48. Arnaiz, S.L., Coronel, M.F. & Boveris, A. Nitric oxide, superoxide, and hydrogen peroxide production in brain mitochondria after haloperidol treatment. Nitric Oxide 3, 235–243 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Beirup, S. Barry and S. Bennett for expert technical assistance. This work was supported by the Swedish Science Council (Project No. 08644), a grant from AGY Therapeutics, the Swedish National Network in Neuroscience, Fundação de Amparo a Pesquisa do Estado de São Paulo, Brazil, the Swedish Association of Neurologically Disabled, The Mattson foundation, the Royal Physiographic Society and National Institutes of Health grant RO1 DK53993.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeusz Wieloch.

Ethics declarations

Competing interests

This work was supported by a grant from AGY Therapeutics. AGY Therapeutics has filed a patent on the use of UCP-2 as a neuroprotectant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattiasson, G., Shamloo, M., Gido, G. et al. Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat Med 9, 1062–1068 (2003). https://doi.org/10.1038/nm903

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm903

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing