Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth

Abstract

Current understanding of key transcription factors regulating angiogenesis is limited. Here we show that RNA-cleaving phosphodiester-linked DNA-based enzymes (DNAzymes), targeting a specific motif in the 5′ untranslated region of early growth response (Egr-1) mRNA, inhibit Egr-1 protein expression, microvascular endothelial cell replication and migration, and microtubule network formation on basement membrane matrices. Egr-1 DNAzymes blocked angiogenesis in subcutaneous Matrigel plugs in mice, an observation that was independently confirmed by plug analysis in Egr-1-deficient animals, and inhibited MCF-7 human breast carcinoma growth in nude mice. Egr-1 DNAzymes suppressed tumor growth without influencing body weight, wound healing, blood coagulation or other hematological parameters. These agents inhibited endothelial expression of fibroblast growth factor (FGF)-2, a proangiogenic factor downstream of Egr-1, but not that of vascular endothelial growth factor (VEGF). Egr-1 DNAzymes also repressed neovascularization of rat cornea. Thus, microvascular endothelial cell growth, neovascularization, tumor angiogenesis and tumor growth are processes that are critically dependent on Egr-1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNAzyme DzF inhibits human microvascular endothelial cell proliferation, migration, microtubule formation and Egr-1 expression.
Figure 2: Egr-1 DNAzymes inhibit angiogenesis.
Figure 3: Egr-1 DNAzyme inhibits human MCF-7 breast carcinoma growth as xenografts in nude mice through suppression of angiogenesis.
Figure 4: Intratumoral administration of Egr-1 DNAzyme has no adverse effect on wound healing or hemostasis.
Figure 5: Egr-1 DNAzyme inhibition is mediated by Egr-1-dependent FGF-2 expression.
Figure 6: Solid B16 tumor growth in mice is Egr-1-independent.

Similar content being viewed by others

References

  1. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    CAS  PubMed  Google Scholar 

  2. Folkman, J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann. Surg. 175, 409–416 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kerbel, R. & Folkman, J. Clinical translation of angiogenesis inhibitors. Nat. Rev. Cancer 2, 727–739 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Sukhatme, V.P. et al. A zinc-finger encoding gene corregulated with c-Fos during growth and differentiation and after depolarization. Cell 53, 37–43 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Gashler, A. & Sukhatme, V. Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog. Nucl. Acid Res. 50, 191–224 (1995).

    Article  CAS  Google Scholar 

  6. Khachigian, L.M., Lindner, V., Williams, A.J. & Collins, T. Egr-1-induced endothelial gene expression: a common theme in vascular injury. Science 271, 1427–1431 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Khachigian, L.M. & Collins, T. Inducible expression of Egr-1-dependent genes: a paradigm of transcriptional activation in vascular endothelium. Circ. Res. 81, 457–461 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Santoro, S.W. & Joyce, G.F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. USA 94, 4262–4266 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Montesano, R., Orci, L. & Vassalli, P. In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J. Cell Biol. 97, 1648–1652 (1983).

    Article  CAS  PubMed  Google Scholar 

  10. Cieslak, M. et al. DNAzymes to beta 1 and beta 3 mRNA down-regulate expression of the targeted integrins and inhibit endothelial cell capillary tube formation in fibrin and Matrigel. J. Biol. Chem. 277, 6779–6787 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Lee, S. et al. Luteinizing hormone deficiency and female infertility in mice lacking the transcription factor NGFI-A (Egr-1). Science 273, 1219–1221 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Fournier, G.A., Lutty, G.A., Watt, S., Fenselau, A. & Patz, A. A corneal micropocket assay for angiogenesis in the rat eye. Invest. Ophthalmol. Vis. Sci. 21, 351–354 (1981).

    CAS  PubMed  Google Scholar 

  13. Parry, T.J. et al. Bioactivity of anti-angiogenic ribozymes targeting Flt-1 and KDR mRNA. Nucleic Acids Res. 27, 2569–2577 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lowe, H.C. et al. Catalytic oligodeoxynucleotides define a key regulatory role for early growth response factor-1 in the porcine model of coronary in-stent restenosis. Circ. Res. 89, 670–677 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Shing, Y. et al. Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 223, 1296–1298 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Santiago, F.S., Lowe, H.C., Day, F.L., Chesterman, C.N. & Khachigian, L.M. Egr-1 induction by injury is triggered by release and paracrine activation by fibroblast growth factor-2. Am. J. Pathol. 154, 937–944 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, D., Mayo, M.W. & Baldwin, A.S., Jr. Basic fibroblast growth factor transcriptional autoregulation requires EGR-1. Oncogene 14, 2291–2299 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Biesiada, E., Razandi, M. & Levin, E.R. Egr-1 activates basic fibroblast growth factor transcription. J. Biol. Chem. 271, 18576–18581 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. McLeskey, S.W. et al. Tumor growth of FGF or VEGF transfected MCF-7 breast carcinoma cells correlates with density of specific microvessels independent of the transfected angiogenic factor. Am. J. Pathol. 153, 1993–2006 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McLeskey, S.W. et al. Fibroblast growth factor overexpressing breast carcinoma cells as models of angiogenesis and metastasis. Breast Cancer Res. Treat. 39, 103–117 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, L., Kharbanda, S., McLeskey, S.W. & Kern, F.G. Overexpression of fibroblast growth factor 1 in MCF-7 breast cancer cells facilitates tumor cell dissemination but does not support the development of macrometastases in the lungs or lymph nodes. Cancer Res. 59, 5023–5029 (1999).

    CAS  PubMed  Google Scholar 

  22. McLeskey, S.W. et al. Effects of AGM-1470 and pentosan polysulphate on tumorigenicity and metastasis of FGF-transfected MCF-7 cells. Br. J. Cancer 73, 1053–1062 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, L., Kharabanda, S., Hanfelt, J. & Kern, F.G. Both autocrine and paracrine effects of transfected acidic fibroblast growth factor are involved in the estrogen-independent and antiestrogen-resistant growth of MCF-7 breast cancer cells. Cancer Res. 58, 352–361 (1998).

    CAS  PubMed  Google Scholar 

  24. Karpanen, T. et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res. 61, 1786–1790 (2001).

    CAS  PubMed  Google Scholar 

  25. Gille, J., Swerlick, R.A. & Caughman, S.W. Transforming growth factor-alpha-induced transcriptional activation of the vascular permeability factor (VPF/VEGF) gene requires AP-2-dependent DNA binding and transactivation. EMBO J. 16, 750–759 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Finkenzeller, G., Sparacio, A., Technau, A., Marme, D. & Siemeister, G. Sp1 recognition sites in the proximal promoter of the human vascular endothelial growth factor gene are essential for platelet-derived growth factor-induced gene expression. Oncogene 15, 669–676 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Li, Y. et al. Active immunization against the vascular endothelial growth factor receptor flk1 inhibits tumor angiogenesis and metastasis. J. Exp. Med. 195, 1575–1584 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Prewett, M. et al. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res. 59, 5209–5218 (1999).

    CAS  PubMed  Google Scholar 

  29. Shiose, S. et al. Gene transfer of a soluble receptor of VEGF inhibits the growth of experimental eyelid malignant melanoma. Invest. Opthalmol. Vis. Sci. 41, 2395–2403 (2000).

    CAS  Google Scholar 

  30. Dennis, P.A. & Rifkin, D.B. Studies on the role of basic fibroblast growth factor in vivo: inability of neutralizing antibodies to block tumor growth. J Cell. Physiol. 144, 84–98 (1990).

    Article  CAS  PubMed  Google Scholar 

  31. Ogawa, T., Takayama, K., Takakura, N., Kitano, S. & Ueno, H. Anti-tumor angiogenesis therapy using soluble receptors: enhanced inhibition of tumor growth when soluble fibroblast growth factor receptor-1 is used with soluble vascular endothelial growth factor receptor. Cancer Gene Ther. 9, 633–640 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Wedge, S.R. et al. ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 62, 4645–4655 (2002).

    CAS  PubMed  Google Scholar 

  33. Battegay, E.J. Angiogenesis: mechanistic insights, neovascular diseases, and therapeutic prospects. J. Mol. Med. 73, 333–346 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Haas, T.L., Stitelman, D., Davis, S.J., Apte, S.S. & Madri, J.A. Egr-1 mediates extracellular matrix-driven transcription of membrane type 1 matrix metalloproteinase. J. Biol. Chem. 274, 22679–22685 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Goldberg, E.P., Hadba, A.R., Almond, B.A. & Marotta, J.S. Intratumoral cancer chemotherapy and immunotherapy: opportunities for nonsystemic preoperative drug delivery. J. Pharm. Pharmacol. 54, 159–180 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Usman, N. & Blatt, L.M. Nuclease-resistant synthetic ribozymes: developing a new class of therapeutics. J. Clin. Invest. 106, 1197–1202 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pavco, P.A. et al. Antitumor and antimetastatic activity of ribozymes targeting the messenger RNA of vascular endothelial growth factor receptors. Clin. Cancer Res. 6, 2094–2103 (2000).

    CAS  PubMed  Google Scholar 

  38. Masood, R. et al. Vascular endothelial growth factor (VEGF) is an autocrine growth factor for VEGF receptor-positive human tumors. Blood 98, 1904–1913 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Herold-Mende, C. et al. Expression and functional significance of vascular endothelial growth factor receptors in human tumor cells. Lab. Invest. 79, 1573–1782 (1999).

    CAS  PubMed  Google Scholar 

  40. Eyetech. Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina 22, 143–152 (2002).

  41. Khachigian, L.M. DNAzymes: cutting a path to a new class of therapeutics. Curr. Opin. Mol. Ther. 4, 119–121 (2002).

    CAS  PubMed  Google Scholar 

  42. Santiago, F.S. et al. New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth factor injury. Nat. Med. 11, 1264–1269 (1999).

    Article  Google Scholar 

  43. Khachigian, L.M., Fahmy, R.G., Zhang, G., Bobryshev, Y.V. & Kaniaros, A. c-Jun regulates vascular smooth muscle cell growth and neointima formation after arterial injury: inhibition by a novel DNAzyme targeting c-Jun. J. Biol. Chem. 277, 22985–22991 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Chan, J.C., Duszczyszyn, D.A., Castellino, F.J. & Ploplis, V.A. Accelerated skin wound healing in plasminogen activator inhibitor-1-deficient mice. Am. J. Pathol. 159, 1681–1688 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Visvanathan, S., Geczy, C.L., Harmer, J.A. & McNeil, H.P. Monocyte tissue factor induction by activation of beta 2-glycoprotein-I-specific T lymphocytes is associated with thrombosis and fetal loss in patients with antiphospholipid antibodies. J. Immunol. 165, 2258–2262 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Chalifour and J. Milbrandt for Egr-1-deficient mice, J. Hood and D. Cheresh for CAM sections, W. Gerlach and J. Pimanda for helpful comments, and H. Zreiqat and W. Lipworth for technical assistance. This work was supported by Johnson & Johnson Research Pty. Limited, a National Health and Medical Research Council (NHMRC) Program Grant and a New South Wales Health Department Research and Infrastructure Grant. L.M.K. is a Principal Research Fellow of the NHMRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levon M Khachigian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fahmy, R., Dass, C., Sun, LQ. et al. Transcription factor Egr-1 supports FGF-dependent angiogenesis during neovascularization and tumor growth. Nat Med 9, 1026–1032 (2003). https://doi.org/10.1038/nm905

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm905

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing